Skip to main content
Log in

Sequential Memory: A Developmental Perspective on Its Relation to Frontal Lobe Functioning

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The multidimensional nature of the frontal lobes serves to organize and coordinate brain functionings playing a central and pervasive role in human cognition. The executive processes implicated in complex cognition such as novel problem solving, modifying behavior as appropriate in response to changes in the environment, inhibiting prepotent or previous responses, and the implementation of schemas that organize behavior over time are believed to be mediated by the frontal regions of the brain. Overall, the functioning of the frontal lobes assists individuals in goal directed and self-regulatory behavior. Additional theories of frontal lobe functioning have focused on its involvement in temporal, or time-related domains. The organizational and strategic nature of frontal lobe functioning affects memory processes by enhancing the organization of to-be-remembered information. Among the specific memory systems presumed to be based on anterior cerebral structures is the temporal organization of memory. An essential component of memory that involves temporal organization is sequential ordering entailing the ability to judge which stimuli were seen most recently and the temporal ordering of events in memory. Focal lesion studies have demonstrated the importance of the frontal lobes on retrieval tasks in which monitoring, verification, and placement of information in temporal and spatial contexts is of critical importance. Similarly, frontal lobe damage has been associated with deficits in memory for the temporal ordering, or sequencing, of events. The acquisition of abilities thought to be mediated by the frontal lobes, including sequential memory, unfolds throughout childhood, serving to condition patterns of behavior for the rest of the brain. Development of the frontal regions of the brain is known to continue through late adolescence and into early adulthood, in contrast to the earlier maturation of other cortical regions. The developmental patterns of the frontal lobes are thought to involve a hierarchical, dynamic, and multistage process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., and Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Dev. Neuropsychol. 20(1): 385-406.

    Google Scholar 

  • Anderson, V. A., and Lajoie, G. (1996). Development of memory and learning skills in school-aged children: A neuropsychological perspective. Appl. Neuropsychol. 3/4: 128-139.

    Google Scholar 

  • Ardila, A., and Rosselli, M. (1994). Development of language, memory, and visuospatial abilities in 5-to 12-year-old children using a neuropsychological battery. Dev. Neuropsychol. 10(2): 97-120.

    Google Scholar 

  • August, G. J., and Garfinkel, B. D. (1990). Comorbidity of ADHD and reading disability among clinic-referred children. J. Abnorm. Child Psychol. 18: 29-45.

    Google Scholar 

  • Bachevalier, J., and Hagger, C. (1991). Sex differences in the development of learning abilities in primates. Psychoneuroendocrinolgy 16: 177-188.

    Google Scholar 

  • Baddeley, A. D. (1992). Working memory. Science 255: 556-559.

    Google Scholar 

  • Baddeley, A. D. (2001). Is working memory still working? Am. Psychol. 56(11): 851-864.

    Google Scholar 

  • Baddeley, A. D., and Hitch, G. J. (1974). Working memory. In: Bower, G. H. (ed.), The Psychology of Learning and Motivation, Vol. 8, Academic Press, New York, pp. 47-89.

    Google Scholar 

  • Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 121: 65-94.

    Google Scholar 

  • Barkley, R. A. (2001). The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychol. Rev. 11(1): 1-29.

    Google Scholar 

  • Barringer, M. S., and Reynolds, C. R. (1995, November). Behavior Ratings of Frontal Lobe Dysfunction. Paper Presented at the Annual Meeting of the National Academy of Neuropsychology, Orlando, FL.

  • Becker, M. G., Isaac, W., and Hynd, G. W. (1987). Neuropsychological development of nonverbal behaviors attributed to "frontal lobe" functioning. Dev. Neuropsychol. 3: 275-298.

    Google Scholar 

  • Bishop, J., Knights, R. M., and Stoddart, C. (1990). Rey Auditory-Verbal Learning Test: Performance of English and French children aged 5 to 16. Clin. Neuropsychol. 4(2): 133-140.

    Google Scholar 

  • Bjork, E. L., and Cummings, E. M. (1984). Infant search errors: Stage of concept development or stage of memory development. Memory Cogn. 12(1): 1-19.

    Google Scholar 

  • Bjorklund, D. F., and Douglas, R. N. (1997). The development of memory strategies. In: Cowan, N. (ed.), The Development of Memory in Childhood: Studies in Developmental Psychology, Psychology Press/Erlbaum, Hove, England, pp. 201-246.

    Google Scholar 

  • Brown, J. W. (1990). Psychology of time awareness. Brain Cogn. 14(2): 144-164.

    Google Scholar 

  • Buckner, R. L., and Petersen, S. E. (1996). What does neuroimaging tell us about the role of prefrontal cortex in memory retrieval? Semin. Neurosci. 8: 47-55.

    Google Scholar 

  • Butters, N., and Cermak, L. S. (1974). The role of cognitive factors in the memory disorders of alcoholic patients with the Korsakoff syndrome. Ann. New York Acad. Sci. 233: 61-75.

    Google Scholar 

  • Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain Cogn. 20: 51-73.

    Google Scholar 

  • Caviness, V. S., Jr., Kennedy, D. N., Richelme, C., Rademacher, J., and Filipek, P. A. (1996). The human brain age 7-11 years: A volumetric analysis based on magnetic resonance images. Cereb. Cortex 6: 726-736.

    Google Scholar 

  • Cermak, L. S., Butters, N., and Moreines, J. (1974). Some analyses of the verbal encoding deficit of alcoholic Korsakoff patients. Brain Lang. 1(2): 141-150.

    Google Scholar 

  • Chelune, G. J., and Baer, R. A. (1986). Developmental norms for the Wisconsin Card Sorting Test. J. Clin. Exp. Neuropsychol. 8: 219-228.

    Google Scholar 

  • Chelune, G. J., Ferguson, W., Koon, R., and Dickey, T. O. (1986). Frontal lobe disinhibition in attention deficit disorder. Child Psychiatry Hum. Dev. 16: 221-234.

    Google Scholar 

  • Chugani, H. T. (1994). Development of regional brain glucose metabolism in relation to behavior and plasticity. In: Dawson, G. and Fischer, K. W. (eds.), Human Behavior and the Developing Brain, Guilford, New York, pp. 153-175.

    Google Scholar 

  • Chugani, H. T., and Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231: 840-843.

    Google Scholar 

  • Corkin, S. (1965). Tactually-guided image learning in man: Effect of unilateral cortical excisions and bilateral hippocampal lesions. Neuropsychologia 3: 339-351.

    Google Scholar 

  • Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Arch. Neurol. 50(8): 873-880.

    Google Scholar 

  • Damasio, A. R., Tranel, D., and Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal lobe damage fail to respond autonomically to social stimuli. Behav. Brain Res. 41(2): 81-94.

    Google Scholar 

  • Daum, I., Schugens, M. M., Spieker, S., Poser, U., Schönle, P. W., and Birbaumer, N. (1995). Memory and skill acquisition in Parkinson's disease and frontal lobe dysfunction. Cortex 31(3): 413-432.

    Google Scholar 

  • Davies, P. L., and Rose, J. D. (1999). Assessment of cognitive development in adolescents by means of neuropsychological tasks. Dev. Neuropsychol. 15(2): 227-248.

    Google Scholar 

  • De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J. A., Proffitt, T. M., Mahony, K., et al. (2003). Normative data from the Cantab. I: Development of executive function over the lifespan. J. Clin. Exp. Neuropsychol. 25(2): 242-254.

    Google Scholar 

  • Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Dev. Rev. 12(1): 45-75.

    Google Scholar 

  • Denckla, M. B. (1994). Measurement of executive function. In: Lyon, G. R. (ed.), Frames of Reference for the Assessment of Learning Disabilities: New Views on Measurement Issues, Paul H. Brookes, Baltimore, MD, pp. 117-142.

    Google Scholar 

  • Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In: Lyon, G. R. and Krasnegor, N. A. (eds.), Attention, Memory, and Executive Function, Paul H. Brookes, Baltimore, MD, pp. 263-278.

    Google Scholar 

  • Dery, M., Toupin, J., Pauze, R., Mercier, H., and Fortin, L. (1999). Neuropsychological characteristics of adolescents with conduct disorder: Association with attention-deficit-hyperactivity and aggression. J. Abnorm. Child Psychol. 27(3): 225-236.

    Google Scholar 

  • Diamond, A. (1985). Development of the ability to use recall to guide action, as indicated by infants' performance on AB. Child Dev. 56(4): 868-883.

    Google Scholar 

  • Diamond, A. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. Ann. New York Acad. Sci. 608: 267-317.

    Google Scholar 

  • Diamond, A., and Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Dev. Psychobiol. 22: 271-294.

    Google Scholar 

  • Diamond, A., and Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget's AB task: Evidence for dependence on dorsolateral prefrontal cortex. Exp. Brain Res. 74: 24-40.

    Google Scholar 

  • Eslinger, P. J. (1996). Conceptualizing, describing, and measuring components of executive function: A summary. In: Lyon, G. R. and Krasnegor, N. A. (eds.), Attention, Memory, and Executive Function Paul H. Brookes, Baltimore, MD, pp. 367-396.

    Google Scholar 

  • Espy, K. A., Kaufmann, P. M., Glisky, M. L., and McDiarmid, M. D. (2001). New Procedures to assess executive functions in preschool children. Clin. Neuropsychol. 15(1): 46-58.

    Google Scholar 

  • Fischer, K. W., and Rose, S. P. (1997). Dynamic growth cycles of brain and cognitive development. In: Thatcher, R. W., Lyon, G. R., Rumsey, J., and Krasnegor, N. (eds.), Developmental Neuroimaging: Mapping the Development of Brain and Behavior, Academic Press, San Diego, CA, pp. 263-279.

    Google Scholar 

  • Fletcher, P. C., Shallice, T., and Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory I: Encoding. Brain 121: 1239-1248.

    Google Scholar 

  • Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S. J., and Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory II: Retrieval. Brain 121: 1249-1256.

    Google Scholar 

  • Forrester, G., and Geffen, G. (1991). Performance measures of 7-to 15-year-old children on the Auditory-Verbal Learning Test. Clin. Neuropsychol. 5(4): 345-359.

    Google Scholar 

  • Funahashi, S. (2001). Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci. Res. 39: 147-165.

    Google Scholar 

  • Fuster, J. M. (1997). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 3rd ed., Lippincott-Raven, Philadelphia, PA.

    Google Scholar 

  • Fuster, J. M. (2002). Physiology of executive functions: The perception-action cycle. In: Stuss, D. T. and Knight, R. T. (eds.), Principles of Frontal Lobe Function, Oxford University Press, New York, pp. 96-108.

    Google Scholar 

  • Gathercole, S. E. (1998). The development of memory. J. Child Psychol. Psychiatry 39(1): 3-27.

    Google Scholar 

  • Gincola, P. R., Martin, C. S., Tarter, R. W., Pelham, W. E., and Moss, H. B. (1996). Executive cognitive functioning and aggressive behavior in preadolescent boys at high risk for substance abuse/dependence. J. Stud. Alcohol 57: 352-359.

    Google Scholar 

  • Gibson, K. R. (1991). Myelination and behaviral development: A comparative perspective on questions of neoteny, altriciality and intelligence. In: Gibson, K. R., and Petersen, A. C. (eds.), Brain Maturation and Cognitive Development: Comparative and Cross-Cultural Perspectives, Aldine de Gruyter Press, Hawthorne, NY, pp. 29-63.

    Google Scholar 

  • Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L. et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4-18. Cereb. Cortex 6(4): 551-560.

    Google Scholar 

  • Gioia, G. A., Isquith, P. K., and Guy, S. C. (2001). Assessment of executive functions in children with neurological impairment. In: Simeonsson, R. J., and Rosenthal, S. L. (eds.), Psychological and Developmental Assessment: Children With Disabilities and Chronic Conditions, Guilford, New York, pp. 317-356.

    Google Scholar 

  • Glick, S. D., Ross, D. A., and Hough, L. B. (1982). Lateral asymmetry of neurotransmitters in human brain, Brain Res. 234(1): 53-63.

    Google Scholar 

  • Godbout, L., and Doyon, J. (1995). Mental representation of knowledge following frontal lobe or postrolandic lesions. Neuropsychologia 33(12): 1671-1696.

    Google Scholar 

  • Goldberg, E. (2001). The Executive Brain: Frontal Lobes and the Civilized Mind, Oxford, New York.

    Google Scholar 

  • Golden, C. J. (1981). The Luria-Nebraska Children's Battery: Theory formulation. In: Hynd, G. W., and Obrzut, J. (eds.), Neuropsychological Assessment and the School-Age Child: Issues and Procedures, Grune and Strattion, New York, pp. 277-302.

    Google Scholar 

  • Goldman, P. S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp. Neurol. 32: 366-387.

    Google Scholar 

  • Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Dev. 58(3): 601-622.

    Google Scholar 

  • Goldman-Rakic, P. S., and Brown, R. M. (1982). Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev. Brain Res. 4(3): 339-349.

    Google Scholar 

  • Goldstein, S. (1999). Attention-deficit/hyperactivity disorder. In: Golstein, S., and Reynolds, C. R. (eds.), Handbook of Neurodevelopmental and Genetic Disorders in Children, Guilford, New York, pp. 154-184.

    Google Scholar 

  • Gorenstein, E. E., Mammato, C. A., and Sandy, J. M. (1989). Performance of inattentive-overactive children on selected measures of prefrontal-type function. J. Clin. Psychol. 45(4): 619-632.

    Google Scholar 

  • Graham, S., and Harris, K. R. (1993). Teaching writing strategies to students with learning disabilities: Issues and recommendations. In: Meltzer, L. J. (ed.), Strategy Assessment and Instruction for Students With learning Disabilities, Pro-Ed, Austin, TX, pp. 271-292.

    Google Scholar 

  • Grattan, L. M., and Eslinger, P. J. (1991). Frontal lobe damage in children and adults: A comparative review. Dev. Neuropsychol. 7(3): 283-326.

    Google Scholar 

  • Griffith, E. M., Pennington, B. F., Wehner, E. A., and Rogers, S. J. (1999). Executive functions in young children with autism. Child Dev. 70(4): 817-832.

    Google Scholar 

  • Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., and Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded, Psychological Assessment Resources, Odessa, FL.

    Google Scholar 

  • Heilman, K. M., Voeller, K. K., and Nadeau, S. E. (1991). A possible pathophysiologic substrate of attention deficit hyperactivity disorder. J. Child Neurol. 6 (Suppl.) S76-S81.

    Google Scholar 

  • Howes, N. L., Bigler, E. D., Lawson, J. S., and Burlingame, G. M. (1999). Reading disability subtypes and the Test of Memory and Learning. Arch. Clin. Neuropsychol. 14(3): 317-339.

    Google Scholar 

  • Hulme, C., Muir, C., Thompson, N., and Lawrence, A (1984). Speech rate and the development of short-term memory span. J. Exp. Child Psychol. 38: 241-253.

    Google Scholar 

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental change and effects of aging. Brain Res. 163: 195-205.

    Google Scholar 

  • Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In: Dawson, G., Fischer, K. W. (eds.), Human Behavior and the Developing Brain, Guilford, New York, pp. 137-152.

  • Huttenlocher, P. R., and de Courten, C. (1987). The development of synapses in striate cortex of man. Hum. Neurobiol. 6(1): 1-9.

    Google Scholar 

  • Incisa della Rocchetta, A. (1986). Classification and recall of pictures after unilateral frontal or temporal lobectomy. Cortex 22: 189-211.

    Google Scholar 

  • Incisa della Rocchetta, A., and Milner, B. (1993). Strategic search and retrieval inhibition: The role of the frontal lobes. Neuropsychologia 31(6): 503-524.

    Google Scholar 

  • Isaacs, E. B., and Vargha-Khadem, F. (1989). Differential course of development of spatial and verbal memory span: A normative study. Bri. J. Dev. Psychlo. 7: 377-380.

    Google Scholar 

  • Jacobsen, C. F. (1935). Functions of the frontal association area in primates. Arch. Neurol. Psychiatry 33: 558-569.

    Google Scholar 

  • Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., and Squire, L. R. (1989a). Cognitive impairment following frontal lobe damage and its relevance to human amnesisa. Behav. Neurosci. 103(3): 548-560.

    Google Scholar 

  • Janowsky, J. S., Shimamura, A. P., and Squire, L. R. (1989b). Source memory impariment in patients with frontal lobe lesions. Neuropsychologia 27: 1043-1056.

    Google Scholar 

  • Jernigan, T. L., Trauner, D. A., Hesselink, J. R., and Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain 114: 2037-2049.

    Google Scholar 

  • Jetter, W., Poser, U., Freeman, R. B., and Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients. Cortex 22: 229-242.

    Google Scholar 

  • Joseph, R. (1996). Neuropsychiarty, Neuropsychology, and Clinical Neuroscience: Emotion, Evolution, Cognition, Language, Memory, Brain Damage, and Abnormal Behavior, 2nd ed., Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Kapur, S., Craik, F. I. M., Jones, C., Brown, G. M., Houle, S., and Tulving, E. (1995). Functional role of the prefrontal cortex in retrieval of memories: A PET study. Neurorep. Int. J. Rapid Commun. Res. Neurosci. 6(14): 1880-1884.

    Google Scholar 

  • Kapur, S., Craik, F. I. M., Tulving, E., Wilson, A. A., Houle, S., and Brown, G. M. (1994). Neuroanatomical correlates of encoding in episodic memory: Levels of processing effect. Proc. Nat. Acad. Sci. U.S.A. 91: 2008-2011.

    Google Scholar 

  • Kelly, M. S., Best, C. T., and Kirk, U. (1989). Cognitive processing deficits in reading disabilities: A prefrontal cortical hypothesis. Brain cogn. 11: 275-293.

    Google Scholar 

  • Kennedy, C., Grave, G. D., Jehle, J. W., and Sokoloff, L. (1970). Blood flow to white matter during maturation of the brain Neurology 20: 613-618.

    Google Scholar 

  • Kesner, R. P., Hopkins, R. O., and Fineman, B. (1994). Item and order dissociation in humans with prefrontal cortex damage, Neuropsychologia 32(8): 881-891.

    Google Scholar 

  • Kimura, D. (1992). Sex differences in the brain. Sci. Am. 267(3): 118-125.

    Google Scholar 

  • Kinney, H. C., Brody, B. A., Kloman, A. S., and Gilles, F. H., (1988). Sequence of central nervous system myelination in human infancy. J. Neuropathol. Exp. Neurol. 47: 217-234.

    Google Scholar 

  • Klenberg, L., Korkman, M., and Lahti-Nuuttila, P. (2001). Differential development of attention and executive function in 3-to 12-year-old Finnish children. Dev. Neuropsychol. 20(1): 407-428.

    Google Scholar 

  • Kolb, B., and Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia 19: 505-514.

    Google Scholar 

  • Konorski, J. (1959). A new method of physiological investigation of recent memory in animals. Bulletin de l'Academie polonaise des sciences 7: 115-117.

    Google Scholar 

  • Korkman, M., Kemp, S. L., and Kirk, U. (2001). Effects of age on neurocognitive measures of children ages 5 to 12: A cross-sectional study on 800 children from the United States. Dev. Neuropsychol. 20(1), 331-354.

    Google Scholar 

  • Kramer, J. H., Delis, D. C., Kaplan, E., O'Donnell, L., and Prifitera, A. (1997). Developmental sex differences in verbal learining Neuropsychology 11(4): 577-584.

    Google Scholar 

  • Lee, M., Vaughn, B. E., and Kopp, C. B. (1983). Role of self-control in the performance of very young children on a delayed-response memory-for-location task. Dev. Psychol. 19(1), 40-44.

    Google Scholar 

  • Lehto, J. (1996). Are executive function tests dependent on working memory capacity? Q. J. Exp. Psychol. Hum. Exp. Psychol. (Spec. Issue) Working Memory 49A(1): 29-50.

    Google Scholar 

  • Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J., Harward, H., et al. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Dev. Neuropsychol. 7: 377-395.

    Google Scholar 

  • Lewinsohn, P. M., Zieler, R. E., Libet, J., Eyeberg, S., and Nielson, G. (1972). Short-term memory: A comparison between frontal and nonfrontal right-and left-hemisphere brain-damaged patients. J. Comp. Physiol. Psychol. 81(2): 248-255.

    Google Scholar 

  • Lezak, M. D. (1995). Neuropsychological Assessment, Oxford University Press, New York.

    Google Scholar 

  • Lin, C. C. H., Chen, W. J., Yang, H., Hsiao, C. K., and Tien, A.Y. (2000). Performance on the Wisconsin Card Sorting Test among adolescents in Taiwan: Norms, factorial structure, and relation to schizotypy. J. Clin. Exp. Neuropsychol. 22(1): 69-79.

    Google Scholar 

  • Luciana, M., and Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four-to eight-year-old children. Neuropsychologia 36(3): 273-293.

    Google Scholar 

  • Lueger, R. J., and Gill, K. J. (1990). Frontal-lobe cognitive dysfunction in conduct disorder adolescents. J. Clin. Psychol. 46(6): 696-706.

    Google Scholar 

  • Luria, A. R. (1966). Higher Cortical Functions in Man, Basic, New York, NY.

    Google Scholar 

  • Luria, A. R. (1969). Cerebral organization of conscious acts: A frontal lobe function. Invited Address to the 19th International Congress of Psychology, London, England.

  • Lustig, C., May, C. P., and Hasher, L. (2001). Working memory span and the role of proactive interference. J. Exp. Psych. Gen. 130(2): 199-207.

    Google Scholar 

  • Lyon, G. R., and Krasnegor, N. A. (1996). Attention, Memory, and Executive Function, Paul H. Brookes, Baltimore, MD.

    Google Scholar 

  • Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of the frontal lobes. J. Neurophysiol. 5: 295-308.

    Google Scholar 

  • Mangels, J. A., Gershberg, F. B., Shimamura, A. P., and Knight, R. T. (1996). Impaired retrieval from remote memory in patients with frontal lobe damage. Neuropsychology 10(1): 32-41.

    Google Scholar 

  • Massman, P. J., Delis, D. C., Butters, N., Levin, B. E., and Salmon, D. P. (1990). Are all subcortical dementias alike? Verbal learning and memory in Parkinson's and Huntington's disease patients. J. Clin. Exp. Neuropsychol. 12(5): 729-744.

    Google Scholar 

  • Mattes, J. A. (1980). The role of frontal lobe dysfunction in childhood hyperkinesis. Compr. Psychiatry 21: 358-369.

    Google Scholar 

  • May, C. P., Hasher, L., and Kane, M. J. (1999). The role of interference in memory span. Memory Cogn. 27: 759-767.

    Google Scholar 

  • McAndrews, M. P., and Milner, B. (1991). The frontal cortex and memory for temporal order. Neuropsychologia 29(9): 849-859.

    Google Scholar 

  • McDonald, C. R., Bauer, R. M., Grande, L., Gilmore, R., and Roper, S. (2001). The role of the frontal lobes in memory: Evidence from unilateral frontal resections for relief of intractable epilepsy. Arch. Clin. Neuropsychol. 16: 571-585.

    Google Scholar 

  • Meltzer, L. J. (1993). Strategy use in students with learning disabilities: The challenge of assessment. In: Meltzer, L. J. (ed.), Strategy Assessment and Instruction for Students With Learning Disabilities Austin, TX, Pro-Ed, pp. 93-139.

    Google Scholar 

  • Meudell, P. R., Mayes, A. R., Ostergaard, A., and Pickering, A. (1985). Recency and frequency judgements in alcoholic amnesics and normal people with poor memory. Cortex 21: 487-511.

    Google Scholar 

  • Michon, J. A., and Jackson, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. In: Gibbon, J., and Allen, L. G. (eds.), Annals of the New York Academy of Sciences: Vol. 423. Time and Time Perception, New York Academy of Sciences, New York, pp. 298-321.

    Google Scholar 

  • Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Arch. Neurol. 9: 100-110.

    Google Scholar 

  • Milner, B. (1968). Memory. In: Weiskrantz, L. (ed.), Analysis of Behavioral Change, Harper and Row, New York, pp. 328-350.

    Google Scholar 

  • Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. BMJ, 27: 272-277.

    Google Scholar 

  • Milner, B. (1995). Aspects of human frontal lobe function. In: Jasper, H. H., Riggio, S., and Goldman-Rakic, P. S. (eds.) Epilepsy and the Functional Anatomy of the Frontal Lobe, Raven Press, New York, NY, pp. 67-84.

    Google Scholar 

  • Milner, B., Corsi, P., and Leonard, G. (1991). Frontal-lobe contribution to recency judgments. Neuropsychologia 29(6): 601-618.

    Google Scholar 

  • Milner, B., and Petrides, M. (1984). Behavioural effects of frontal lobe lesions in man. Trends Neurosci. 7(11): 403-407.

    Google Scholar 

  • Milner, B., Petrides, M., and Smith, M. L. (1985). Frontal lobes and the temporal organization of memory. Hum. Neurobiol. 4: 137-142.

    Google Scholar 

  • Mishkin, M., and Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res. 143: 313-323.

    Google Scholar 

  • Mishkin, M., and Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation. J. Comp. Physiol. Psychol. 48: 492-495.

    Google Scholar 

  • Mishkin, M., and Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. J. Comp. Physiol. Psychol. 49: 36-40.

    Google Scholar 

  • Moscovitch, M. (1989). Confabulation and the frontal system: Strategic versus associative retrieval in neuropsychological theories of memory. In Roediger, H. L., III, and Craik, F. I. M. (eds.), Varieties of Memory and Consciousness: Essay in Honor of Endel Tulving, Erlbaum, Hillsdale, NJ pp. 133-160.

    Google Scholar 

  • Moscovitch, M. (1992). Memory and working with memory: A component process model based on modules and central system. J. Cogn. Neurosci. 4(3): 257-267.

    Google Scholar 

  • Nairne, J. S. (1990). Similarity and long-term memory for order. J. Memory Lang. 29(6): 733-746.

    Google Scholar 

  • Nelson, C. A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective. Dev. Psychol. 31(5): 723-738.

    Google Scholar 

  • Nyberg, L., Cabeza, R., and Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychon Bull. Rev. 3(2): 135-148.

    Google Scholar 

  • Nyberg, L., Tulving, E., Habib, R., Nisson, L. G., Kapur, S. Houle, S., et al. (1995). Functional brain maps of retrieval mode and recovery of episodic information. Neurorep. Int. J. Rapid Commun. Res. Neurosci. 7(1): 249-252.

    Google Scholar 

  • Pandya, D. N., and Yeterian, E. H. (1998). Comparison of prefrontal architecture and connections. In: Roberts, A. C., Robbins, T. W., et al. (eds.), The Prefrontal Cortex: Excutive and Cognitive Functions, Oxford University Press, London, pp. 51-66.

    Google Scholar 

  • Paniak, C., Miller, H. B., Murphy, D., Patterson, L., and Keizer, J. (1996). Canadian developmental norms for 9 to 14 year-olds on the Wisconsin Card Sorting Test, Can. J. Rehabil. 9(4), 233-237.

    Google Scholar 

  • Passler, M., Isaac, W., and Hynd, G. W. (1985). Neuropsychological behavior attributed to frontal lobe functioning in children. Dev. Neuropsychol. 1: 349-370.

    Google Scholar 

  • Pennington, B. F. (1994). The working memory function of the prefrontal cortices: Implications for developmental and individual differences in cognition. In: Haith, M. M., Benson, J. B., Roberts, R. J., Jr., and Pennington, B. F. (eds.), The Development of Future-Oriented Processes, University of Chicago Press, Chicago, pp. 243-289.

    Google Scholar 

  • Pennington, B. F., Bennetto, L., McAleer, O., and Roberts, R. J., Jr. (1996). Executive functions and working memory: Theoretical and measurement issues. In: Lyon, G. R., Krasnegor, N. A. (eds.), Attention, Memory, and Executive Function, Paul H. Brookes, Baltimore, MD, pp. 327-348.

    Google Scholar 

  • Pennington, B. F., and Ozonoff, S. (1996). Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry 37(1): 51-87.

    Google Scholar 

  • Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 246: 299-306.

    Google Scholar 

  • Petrides, M., and Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia 20(3): 249-262.

    Google Scholar 

  • Pribram, K. H., Plotkin, H. C., Anderson, R. M., and Leong, D (1977). Information sources in the delayed alternation task for normal and frontal monkeys. Neuropsychologia 15: 329-340.

    Google Scholar 

  • Pribram, K. H., and Tubbs, W. E. (1967). Short-term memory, parsing, and the primate frontal cortex. Science 156 1765-1767.

    Google Scholar 

  • Prisko, L. H. (1963). Short-term Memory in Focal Cerebral Damage. Unpublished doctoral dissertion, McGill University.

  • Quintana, J., and Fuster, J. M. (1999). From perception to action: Temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 9: 213-221.

    Google Scholar 

  • Rakic, P., Bourgeois, J. P., Zecevic, N., Eckenhoff, M. F., and Goldman-Rakic, P. S. (1986). Isochronic overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232-235.

    Google Scholar 

  • Ramsay, M. C., and Reynolds, C. R. (1995). Separate digit tests: A brief history, a literature review, and a reexamination of the factor structure of the Test of Memory and Learning. Neuropsychol. Rev. 5(3): 151-171.

    Google Scholar 

  • Raskin, S. (2000). Treatment of cognitive sequelae: Memory. In: Raskin, S. A., Mateer, C. A. (eds.), Neuropsychological Management of Mild Traumatic Brain Injury, Oxford University Press, New York, pp. 93-107.

    Google Scholar 

  • Reynolds, C. R. (1981). The neuropsychological basis of intelligence. In: Hynd, G. W. and Obrzut, J. (eds.), Neuropsychological Assessment and the School-Age Child, Grune & Stratton, New York, pp. 87-124.

    Google Scholar 

  • Reynolds, C. R. (1997). Forward and backward memory span should not be combined for clinical analysis. Arch. Clin. Neuropsychol. 12(1), 29-40.

    Google Scholar 

  • Reynolds, C. R., and Bigler, E.D. (1994a). Test of Memory and Learning, Pro-Ed, Austin, TX.

    Google Scholar 

  • Reynolds, C. R., and Bigler, E. D. (1994b). Manual for the Test of memory and Learning, Pro-Ed, Austin, TX.

    Google Scholar 

  • Reynolds, C. R., and Kamphaus, R. W. (2002). The Clinician's Guide to the Behavior Assessment System for Children: BASC, Guilford, New York

    Google Scholar 

  • Riccio, C. A., Hall, J., Morgan, A., Hynd, G. W., Gonzalez, J. J., and Marshall, R. M. (1994). Executive function and the Wisconsin Card Sorting Test: Relationship with behavioral ratings and congnitive ability. Dev. Neuropsychol., 10(3): 215-229.

    Google Scholar 

  • Roberts, R. J., Hager, L. D., and Heron, C. (1994). Prefrontal cognitive proecesses: Working memory and inhibition in the antisaccade task. J. Exp. Psychol. Gen. 123: 374-393.

    Google Scholar 

  • Roberts, R. J., and Pennington, B. F. (1996). An interactive framework for examining prefrontal cognitive processes. Dev. Neuropsychol. 12(1): 105-126.

    Google Scholar 

  • Rugg, M. D., Fletcher, P. C., Chua, P. M., and Dolan, R. J. (1999). The role of the prefrontal cortex in recognition memory and memory for source: An fMRI study. Neurolmage 10: 520-529.

    Google Scholar 

  • Rybash, J. M., and Colilla, J. L. (1994). Source memory deficits and frontal lobe functioning in children. Dev. Neuropsychol. 10(1): 67-73.

    Google Scholar 

  • Schacter, D. L. (1987). Memory, Amnesia, and frontal lobe dysfunction. Psychobiology 15: 21-36.

    Google Scholar 

  • Schacter, D. L., Harbluk, J. L., and McLachlan, D. R. (1984). Retrieval without recollection: An experimental analysis of source amnesia. J. Verbal Learn. Verbal Behav. 23: 593-611.

    Google Scholar 

  • Schneider, W., and Pressley, M. (1997). Memory Development Between Two and Twenty, 2nd ed., Erlbaum Mahwah, NJ.

  • Shapiro, J., Nix, G. W., and Foster, S. F. (1990). Auditory perceptual processing in reading disabled children. J. Res. Read. 13: 123-132.

    Google Scholar 

  • Shimamura, A. P. (1995). Memory and frontal lobe function. In: Gazzaniga, M. S. (ed.), The Cognitive Neuroscience, The MIT Press, Cambridge, MA pp. 803-813.

    Google Scholar 

  • Shimamura, A. P. (2002). Memory retrieval and executive control processes. In: Stuss, D. T. and Knight, R. T. (eds.), Principles of Frontal Lobe Function, Oxford University Press, New York, pp. 210-220.

    Google Scholar 

  • Shimamura, A. P., Janowsky, J. S., and Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia 28(8): 803-813.

    Google Scholar 

  • Shimamura, A. P., Janowsky, J. S., and Squire, L. R. (1991). What is the role of frontal lobe damage in memory disorders? In: Levin, H. S., Eisenberg, H. M., and Benton, A. L. (eds.), Frontal Lobe Function and Dysfunction, Oxford University Press, London, pp. 173-195.

    Google Scholar 

  • Siegel, L. S. (1994). Working memory and reading: A life-span perspective. Int. J. Behav. Dev. 17(1), 109-124.

    Google Scholar 

  • Slattery, M. J., Garvey, M. A., and Swedo, S. E. (2001). Frontal-subcortical circuits: A functional developmental approach. In: Lichter, D. G., and Cummings, J. L. (eds.), Frontal-subcortical circuits in psychiatric and neurological disorders, Guilford, New York, pp. 314-333.

    Google Scholar 

  • Sowell, E. R., Delis, D., Stiles, J., and Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. J. Int. Neuropsychol. Soc. 7: 312-322.

    Google Scholar 

  • St. James-Roberts, I. (1979). Neurological plasticity, recovery from brain insult, and child development. Adv. Child Dev. Behav., 14: 253-319.

    Google Scholar 

  • Stuss, D. T. (1992). Biological and psychological development of executive functions. Brain Cogn. 20: 8-23.

    Google Scholar 

  • Stuss, D. T., and Knight, R. T. (2002). Principles of Frontal Lobe Function, Oxford University Press, New York.

    Google Scholar 

  • Stuss, D. T., and Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Ann. Rev. Psychol. 53: 401-433.

    Google Scholar 

  • Taylor, A. E., Saint-Cyr, J. A., and Lang, A. E. (1990). Memory and learning in early Parkinson's disease: Evidence for a "frontal lobe syndrome". Brain and Cogn., 13(2): 211-232.

    Google Scholar 

  • Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain Cogn. 20: 24-50.

    Google Scholar 

  • Thatcher, R. W., Walker, R. A., and Giudice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science 236: 1110-1113.

    Google Scholar 

  • Trahan, D. E., and Quintana, J. W. (1990). Analysis of gender effects upon verbal and visual memory performance in adults. Arch. Clin. Neuropsychol. 5: 325-334.

    Google Scholar 

  • Tulving, E. (2002). Chronesthesia: Conscious awareness of subjective time. In: Stuss, D. T., and Knight, R. T. (eds.), Principles of Frontal Lobe Function, Oxford University press, New York, pp. 311-325.

    Google Scholar 

  • Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., and Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proc. Nat. Acad. Sci. 91: 2016-2020.

    Google Scholar 

  • Vakil, E., and Blachstein, H. (1994). A Supplementary measure in the Rey AVLT for assessing incidental learning of temporal order. J. Clin. Psychol. 50(2): 240-245.

    Google Scholar 

  • Vakil, E., Blachstein, H., and Sheinman, M. (1998). Rey AVLT: Developmental norms for children and the sensitivity of different memory measures to age. Child Neuropsychol. 4(3): 161-177.

    Google Scholar 

  • Waldron, K. A., and Saphire, D. G. (1990). An analysis of WISC-R factors for gifted students with learning disabilities. J. Learn. Disabil. 23: 491-498.

    Google Scholar 

  • Watson, C., and Willows, D. M. (1995). Information-processing patterns in specific reading disability. J. Learning Disabil. 28(4): 216-231.

    Google Scholar 

  • Welsh, M. C. (2002). Developmental and clinical variations in executive functions. In: Molfese, D. L., and Molfese, V. J. (eds.), Developmental Variations in Learning: Applications to Social, Executive Function, Language, and Reading Skills, Erlbaum, Mahwah, NJ, pp. 139-185.

    Google Scholar 

  • Welsh, M. C., and Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Dev. Neuropsychol. 4(3): 199-230.

    Google Scholar 

  • Welsh, M. C., Pennington, B. F., and Groisser, D. B. (1991). A normative-developmental study on executive function: A window on prefrontal function in children. Dev. Neuropsychol. 7(2): 131-149.

    Google Scholar 

  • Wheeler, M. A., Stuss, D. T., and Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. J. Int. Neuropsychol. Soc. 1(6): 525-536.

    Google Scholar 

  • White, D. A., Nortz, M. J., Mandernach, T., Huntington, K., and Steiner, R. D. (2001). Deficits in memory strategy use related to prefrontal dysfunction during early development: Evidence from children with phenylketonuria. Neuropsychology 15(2): 221-229.

    Google Scholar 

  • Wiers, R. W., Gunning, W. B., and Sergeant, J. A. (1998). Is a mild deficit in executive functions in boys related to childhood ADHD or to parental multigenerational alcoholism? J. Abnorm. Child Psychol. 26(6): 415-430.

    Google Scholar 

  • Winograd, E., and Soloway, R. M. (1985). Reminding as a basis for temporal judgments. J. Exp. Psychol. Hum. Learn. Memory, 11: 262-271.

    Google Scholar 

  • Yntema, D. B., and Trask, F. P. (1963). Recall as a search process. J. Verbal Learn. Verbal Behav. 2: 65-74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecil R. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romine, C.B., Reynolds, C.R. Sequential Memory: A Developmental Perspective on Its Relation to Frontal Lobe Functioning. Neuropsychol Rev 14, 43–64 (2004). https://doi.org/10.1023/B:NERV.0000026648.94811.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERV.0000026648.94811.32

Navigation