Skip to main content
Log in

Differential Interactions of Desipramine with Amphetamine and Methamphetamine: Evidence that Amphetamine Releases Dopamine from Noradrenergic Neurons in the Medial Prefrontal Cortex

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amphetamine is more effective than methamphetamine at raising dopamine levels in the prefrontal cortex. The current study tested the hypothesis that norepinephrine transporters are involved in this difference. Using microdialysis, dopamine, norepinephrine, and serotonin were measured in the rat prefrontal cortex after administration of methamphetamine or amphetamine, with and without perfusion of desipramine. Amphetamine raised norepinephrine levels more than methamphetamine did. Desipramine raised dopamine and serotonin levels but did not alter metabolite levels. Desipramine attenuated the increase in dopamine by amphetamine while increasing the dopamine released by methamphetamine. These data suggest that methamphetamine and amphetamine differ in altering prefrontal cortical dopamine levels and in interacting with norepinephrine transporters. It is proposed that amphetamine releases dopamine in the prefrontal cortex primarily through norepinephrine transporters, whereas methamphetamine interacts minimally with norepinephrine transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Anglin, M. D., Burke, C., Perrochet, B., Stamper, E., and Dawud-Noursi, S. 2000. History of the methamphetamine problem. J. Psychoactive Drugs. 32:137–141.

    Google Scholar 

  2. Shoblock, J. R., Sullivan, E. B., Maisonneuve, I. M., and Glick, S. D. 2003. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine. Psychopharmacology (Berl) 165:359–369.

    Google Scholar 

  3. Mazei, M. S., Pluto, C. P., Kirkbride, B., and Pehek, E. A. 2002. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res. 936:58–67.

    Google Scholar 

  4. Sesack, S. R., Hawrylak, V. A., Matus, C., Guido, M. A., and Levey, A. I. 1998. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18:2697–2708.

    Google Scholar 

  5. Slopsema, J. S., van der, G. J., and De Bruin, J. P. 1982. Regional concentrations of noradrenaline and dopamine in the frontal cortex of the rat: Dopaminergic innervation of the prefrontal subareas and lateralization of prefrontal dopamine. Brain Res. 250:197–200.

    Google Scholar 

  6. Gu, H., Wall, S. C., and Rudnick, G. 1994. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269:7124–7130.

    Google Scholar 

  7. Carboni, E., Tanda, G. L., Frau, R., and Di Chiara, G. 1990. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: Evidence that dopamine is taken up in vivo by noradrenergic terminals. J. Neurochem. 55:1067–1070.

    Google Scholar 

  8. Yamamoto, B. K. and Novotney, S. 1998. Regulation of extracellular dopamine by the norepinephrine transporter. J. Neurochem. 71:274–280.

    Google Scholar 

  9. Moron, J. A., Brockington, A., Wise, R. A., Rocha, B. A., and Hope, B. T. 2002. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines. J. Neurosci. 22:389–395.

    Google Scholar 

  10. Kuczenski, R., Segal, D. S., Cho, A. K., and Melega, W. 1995. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J. Neurosci. 15:1308–1317.

    Google Scholar 

  11. Paxinos, G. and Watson, C. The Rat Brain in Stereotaxic Coordinates2nd edition, Academic Press, Inc., 1986.

  12. Baumann, M. H., Char, G. U., De Costa, B. R., Rice, K. C., and Rothman, R. B. 1994. GBR12909 attenuates cocaine-induced activation of mesolimbic dopamine neurons in the rat. J. Pharmacol. Exp. Ther. 271:1216–1222.

    Google Scholar 

  13. Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I., and Partilla, J. S. 2001. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41.

    Google Scholar 

  14. Shankaran, M. and Gudelsky, G. A. 1998. Effect of 3,4-methylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin. Pharmacol. Biochem. Behav. 61:361–366.

    Google Scholar 

  15. Chen, N., Trowbridge, C. G., and Justice, J. B., Jr. 1998. Voltametric studies on mechanisms of dopamine efflux in the presence of substrates and cocaine from cells expressing human norepinephrine transporter. J. Neurochem. 71:653–665.

    Google Scholar 

  16. Florin, S. M., Kuczenski, R., and Segal, D. S. 1995. Effects of reserpine on extracellular caudate dopamine and hippocampus norepinephrine responses to amphetamine and cocaine: Mechanistic and behavioral considerations. J. Pharmacol. Exp. Ther. 274:231–241.

    Google Scholar 

  17. Raiteri, M., Bertollini, A., Angelini, F., and Levi, G. 1975. d-Amphetamine as a releaser or reuptake inhibitor of biogenic amines in synaptosomes. Eur. J. Pharmacol. 34:189–195.

    Google Scholar 

  18. Lundberg, J., Bylock, A., Goldstein, M., Hansson, H. A., and Dahlstrom, A. 1977. Ultrastructural localization of dopamine beta-hydroxylase in nerve terminals of the rat brain. Brain Res. 120:549–552.

    Google Scholar 

  19. Drew, A. E., Derbez, A. E., and Werling, L. L. 2000. Nicotinic receptor-mediated regulation of dopamine transporter activity in rat prefrontal cortex. Synapse 38:10–16.

    Google Scholar 

  20. Elsworth, J. D., Taylor, J. R., Berger, P., and Roth, R. H. 1993. Cocaine-sensitive and-insensitive dopamine uptake in prefrontal cortex, nucleus accumbens and striatum. Neurochem. Int. 23:61–69.

    Google Scholar 

  21. Zaczek, R., Culp, S., and De Souza, E. B. 1991. Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J. Pharmacol. Exp. Ther. 257:830–835.

    Google Scholar 

  22. Au-Young, S. M., Shen, H., and Yang, C. R. 1999. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse 34:245–255.

    Google Scholar 

  23. Linner, L., Endersz, H., Ohman, D., Bengtsson, F., Schalling, M., and Svensson, T. H. 2001. Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex. J. Pharmacol. Exp. Ther. 297:540–546.

    Google Scholar 

  24. Marek, G. J. and Aghajanian, G. K. 1999. 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur. J. Pharmacol. 367:197–206.

    Google Scholar 

  25. Nakayama, K. 2002. Effect of paroxetine on extracellular serotonin and dopamine levels in the prefrontal cortex. Naunyn Schmiedebergs Arch. Pharmacol. 365:102–105.

    Google Scholar 

  26. Langer, S. Z., Moret, C., Raisman, R., Dubocovich, M. L., and Briley, M. 1980. High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of norepinephrine. Science 210:1133–1135.

    Google Scholar 

  27. Hertel, P., Nomikos, G. G., and Svensson, T. H. 1999. The antipsychotic drug risperidone interacts with auto-and hetero-receptors regulating serotonin output in the rat frontal cortex. Neuropharmacology 38:1175–1184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Shoblock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoblock, J.R., Maisonneuve, I.M. & Glick, S.D. Differential Interactions of Desipramine with Amphetamine and Methamphetamine: Evidence that Amphetamine Releases Dopamine from Noradrenergic Neurons in the Medial Prefrontal Cortex. Neurochem Res 29, 1437–1442 (2004). https://doi.org/10.1023/B:NERE.0000026409.76261.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000026409.76261.f3

Navigation