Neurochemical Research

, Volume 29, Issue 3, pp 637–650 | Cite as

Toxicity of Amyloid β Peptide: Tales of Calcium, Mitochondria, and Oxidative Stress

  • Laura Canevari
  • Andrey Y. Abramov
  • Michael R. Duchen
Article

Abstract

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptides. Although the disease undoubtedly reflects the interaction of complex multifactorial processes, Aβ itself is toxic to neurons in vitro and the load of Aβ in vivo correlates well with the degree of cognitive impairment. There has therefore been considerable interest in the mechanism(s) of Aβ neurotoxicity. We here review the basic biology of Aβ processing and consider some of the major areas of focus of this research. It is clear that both AD and Aβ toxicity are characterized by oxidative stress, alterations in the activity of enzymes of intermediary metabolism, and mitochondrial dysfunction, especially impaired activity of cytochrome c oxidase. Studies in vitro also show alterations in cellular calcium signaling. We consider the mechanisms proposed to mediate cell injury and explore evidence to indicate which of these many changes in function are primary and which secondary.

Amyloid β peptide intracellular calcium oxidative stress mitochondria NADPH oxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hardy, J., Duff, K., Hardy, K. G., Perez-Tur, J., and Hutton, M. 1998. Genetic dissection of Alzheimer's disease and related dementias: Amyloid and its relationship to tau. Nat. Neurosci. 1:355–358.PubMedGoogle Scholar
  2. 2.
    Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., and Selkoe, D. J. 1996. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3:16–32.PubMedGoogle Scholar
  3. 3.
    Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., Younkin, L., Good, M. A., Bliss, T. V. P., Hyman, B. T., Younkin, S. G., and Hsiao, K. K. 1999. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2:271–276.PubMedGoogle Scholar
  4. 4.
    Phinney, A. L., Calhoun, M. E., Wolfer, D. P., Lipp, H. P., Zheng, H., and Jucker, M. 1999. No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neuroscience 90:1207–1216.PubMedGoogle Scholar
  5. 5.
    Snowdon, D. A. 1997. Aging and Alzheimer's disease: Lessons from the Nun study. Gerontologist 37:150–156.PubMedGoogle Scholar
  6. 6.
    Näslund, J., Haroutunian, V., Mohs, R., Davis, K.-L., Davies, P., Greengard, P., and Buxbaum, J.-D. 2000. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283:1571–1577.PubMedGoogle Scholar
  7. 7.
    Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. 2003. Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 39:409–421.PubMedGoogle Scholar
  8. 8.
    Nishimoto, I., Okamoto, T., Matsuura, Y., Takahashi, S., Okamoto, T., Murayama, Y., and Ogata, E. 1993. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 362:75–79.PubMedGoogle Scholar
  9. 9.
    Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., and Goldstein, L. S. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28:449–459.PubMedGoogle Scholar
  10. 10.
    Mattson, M. P. 1997. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77:1081–1132.PubMedGoogle Scholar
  11. 11.
    Zheng, H., Jiang, M., Trumbauer, M. E., Sirinathsinghji, D. J., Hopkins, R., Smith, D. W., Heavens, R. P., Dawson, G. R., Boyce, S., and Conner, M. W. 1995. β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531.PubMedGoogle Scholar
  12. 12.
    Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., and Selkoe, D. J. 2003. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100:6382–6387.PubMedGoogle Scholar
  13. 13.
    Wolfe, M. S., De Los Angeles, J., Miller, D. D., Xia, W., and Selkoe, D. J. 1999. Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 38:11223–11230.PubMedGoogle Scholar
  14. 14.
    Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., and Evin, G. 2002. Increased expression of the amyloid precursor β-secretase in Alzheimer's disease. Ann. Neurol. 51:783–786.PubMedGoogle Scholar
  15. 15.
    Roberds, S. L., Anderson, J., Basi, G., Bienkowski, M. J., Branstetter, D. G., Chen, K. S., Freedman, S. B., Frigon, N. L., Games, D., Hu, K., Johnson-Wood, K., Kappenman, K. E., Kawabe, T. T., Kola, I., Kuehn, R., Lee, M., Liu, W., Motter, R., Nichols, N. F., Power, M., Robertson, D. W., Schenk, D., Schoor, M., Shopp, G. M., Shuck, M. E., Sinha, S., Svensson, K. A., Tatsuno, G., Tintrup, H., Wijsman, J., Wright, S., and McConlogue, L. 2001. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: Implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10:1317–1324.PubMedGoogle Scholar
  16. 16.
    Tanzi, R. E., Kovacs, D. M., Kim, T. W., Moir, R. D., Guenette, S. Y., and Wasco, W. 1996. The gene defects responsible for familial Alzheimer's disease. Neurobiol. Dis. 3:159–168.PubMedGoogle Scholar
  17. 17.
    Cataldo, A. M., Peterhoff, C. M., Troncoso, J. C., Gomez-Isla, T., Hyman, B. T., and Nixon, R. A. 2000. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: Differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157:277–286.PubMedGoogle Scholar
  18. 18.
    Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. 1993. Apolipoprotein E: High-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:1977–1981.PubMedGoogle Scholar
  19. 19.
    Schmechel, D. E., Saunders, A. M., Strittmatter, W. J., Crain, B. J., Hulette, C. M., Joo, S. H., Pericak-Vance, M. A., Goldgaber, D., and Roses, A. D. 1993. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90: 9649–9653.PubMedGoogle Scholar
  20. 20.
    Yang, D. S., Smith, J. D., Zhou, Z., Gandy, S. E., and Martins, R. N. 1997. Characterization of the binding of amyloid-β peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J. Neurochem. 68:721–725.PubMedGoogle Scholar
  21. 21.
    Puttfarcken, P. S., Manelli, A. M., Falduto, M. T., Getz, G. S., and LaDu, M. J. 1997. Effect of apolipoprotein E on neurite outgrowth and β-amyloid-induced toxicity in developing rat primary hippocampal cultures. J. Neurochem. 68:760–769.PubMedGoogle Scholar
  22. 22.
    Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. 1993. Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13:1676–1687.PubMedGoogle Scholar
  23. 23.
    Geula, C., Wu, C. K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B. A. 1998. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat. Med. 4:827–831.PubMedGoogle Scholar
  24. 24.
    Snyder, S. W., Ladror, U. S., Wade, W. S., Wang, G. T., Barrett, L. W., Matayoshi, E. D., Huffaker, H. J., Krafft, G. A., and Holzman, T. F. 1994. Amyloid-β aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys. J. 67:1216–1228.PubMedGoogle Scholar
  25. 25.
    Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. F., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. 1998. Diffusible, nonfibrillar ligands derived from A β1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448–6453.PubMedGoogle Scholar
  26. 26.
    Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Selkoe, D. J., and Teplow, D. B. 1999. Amyloid β-protein fibrillogenesis: Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274:25945–25952.PubMedGoogle Scholar
  27. 27.
    Klein, W. L., Krafft, G. A., and Finch, C. E. 2001. Targeting small Aβ oligomers: The solution to an Alzheimer's disease conundrum? Trends Neurosci. 24:219–224.PubMedGoogle Scholar
  28. 28.
    Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., and Glabe, C. 1992. Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J. Biol. Chem. 267:546–554.PubMedGoogle Scholar
  29. 29.
    Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. 1993. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J. Neurochem. 61:1171–1174.PubMedGoogle Scholar
  30. 30.
    Klunk, W. E., Xu, C. J., McClure, R. J., Panchalingam, K., Stanley, J. A., and Pettegrew, J. W. 1997. Aggregation of β-amyloid peptide is promoted by membrane phospholipid metabolites elevated in Alzheimer's disease brain. J. Neurochem. 69: 266–272.PubMedGoogle Scholar
  31. 31.
    Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K. 1992. Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267:18210–18217.PubMedGoogle Scholar
  32. 32.
    Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B., and Selkoe, D. J. 2000. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839.PubMedGoogle Scholar
  33. 33.
    D'Andrea, M. R., Nagele, R. G., Wang, H. Y., Peterson, P. A., and Lee, D. H. 2001. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 38:120–134.PubMedGoogle Scholar
  34. 34.
    Meyer-Luehmann, M., Stalder, M., Herzig, M. C., Kaeser, S. A., Kohler, E., Pfeifer, M. D., Boncristiano, S., Mathews, P. M., Mercken, M., Abramowski, D., Staufenbiel, M., and Jucker, M. 2003. Extracellular amyloid formation and associated pathology in neural grafts. Nat. Neurosci. 6:370–377.PubMedGoogle Scholar
  35. 35.
    Grundke-Iqbal, I., Iqbal, K., George, L., Tung, Y. C., Kim, K. S., and Wisniewski, H. M. 1989. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc. Natl. Acad. Sci. USA 86:2853–2857.PubMedGoogle Scholar
  36. 36.
    Ginsberg, S. D., Crino, P. B., Hemby, S. E., Weingarten, J. A., Lee, V. M., Eberwine, J., and Trojanowski, J. Q. 1999. Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Ann. Neurol. 45:174–181.PubMedGoogle Scholar
  37. 37.
    Li, Q. X., Maynard, C., Cappai, R., McLean, C. A., Cherny, R. A., Lynch, T., Culvenor, J. G., Trevaskis, J., Tanner, J. E., Bailey, K. A., Czech, C., Bush, A., Beyreuther, K., and Masters, C. L. 1999. Intracellular accumulation of detergent-soluble amyloidogenic Aβ fragment of Alzheimer's disease precursor protein in the hippocampus of aged transgenic mice. J. Neurochem. 72:2479–2487.PubMedGoogle Scholar
  38. 38.
    Gouras, G. K., Tsai, J., Näslund, J., Vincent, B., Edgar, M., Checler, F., Greenfield, J. P., Haroutunian, V., Buxbaum, J. D., Xu, H., Greengard, P., and Relkin, N. R. 2000. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156:15–20.PubMedGoogle Scholar
  39. 39.
    Takahashi, R. H., Milner, T. A., Li, F., Nam, E. E., Edgar, M. A., Yamaguchi, H., Beal, M. F., Xu, H., Greengard, P., and Gouras, G. K. 2002. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol. 161:1869–1879.PubMedGoogle Scholar
  40. 40.
    Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. 2003. Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39:409–421.PubMedGoogle Scholar
  41. 41.
    Maruyama, K., Tagawa, K., Kawamura, Y., Asada, H., Ishiura, S., and Obata, K. 1995. Secretion of Alzheimer βA4 protein (1–40) and intracellular retention of βA4 protein (1–42) in transfected COS cells. Biochem. Biophys. Res. Comm. 207:971–917.PubMedGoogle Scholar
  42. 42.
    Turner, R. S., Suzuki, N., Chyung, A. S., Younkin, S. G., and Lee, V. M. 1996. Amyloids β40 and β42 are generated intracellularly in cultured human neurons and their secretion increases with maturation. J. Biol. Chem. 271:8966–8970.PubMedGoogle Scholar
  43. 43.
    Wild-Bode, C., Yamazaki, T., Capell, A., Leimer, U., Steiner, H., Ihara, Y., and Haass, C. 1997. Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. J. Biol. Chem. 272:16085–16088.PubMedGoogle Scholar
  44. 44.
    Tienari, P. J., Ida, N., Ikonen, E., Simons, M., Weidemann, A., Multhaup, G., Masters, C. L., Dotti, C. G., and Beyreuther, K. 1997. Intracellular and secreted Alzheimer β-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 94:4125–4130.PubMedGoogle Scholar
  45. 45.
    Greenfield, J. P., Tsai, J., Gouras, G. K., Hai, B., Thinakaran, G., Checler, F., Sisodia, S. S., Greengard, P., and Xu, H. 1999. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc. Natl. Acad. Sci. USA 96:742–747.PubMedGoogle Scholar
  46. 46.
    Wilson, C. A., Doms, R. W., and Lee, V. M. 1999. Intracellular APP processing and Aβ production in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:787–794.PubMedGoogle Scholar
  47. 47.
    Lucassen, P. J., Chung, W. C., Kamphorst, W., and Swaab, D. F. 1997. DNA damage distribution in the human brain as shown by in situ end labeling: Area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J. Neuropathol. Exp. Neurol. 56:887–900.PubMedGoogle Scholar
  48. 48.
    Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P. 1999. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat. Med. 5:101–106.PubMedGoogle Scholar
  49. 49.
    Behl, C., Davis, J. B., Klier, F. G., and Schubert, D. 1994. Amyloid β peptide induces necrosis rather than apoptosis. Brain Res. 645:253–264.PubMedGoogle Scholar
  50. 50.
    Su, J. H., Anderson, A. J., Cummings, B. J., and Cotman, C. W. 1994. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport 5:2529–2533.PubMedGoogle Scholar
  51. 51.
    Kitamura, Y., Shimohama, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M. A., Perry, G., Whitehouse, P. J., and Taniguchi, T. 1998. Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Res. 780:260–269.PubMedGoogle Scholar
  52. 52.
    Engidawork, E., Gulesserian, T., Seidl, R., Cairns, N., and Lubec, G. 2001. Expression of apoptosis related proteins in brains of patients with Alzheimer's disease. Neurosci. Lett. 303:79–82.PubMedGoogle Scholar
  53. 53.
    Yang, F., Sun, X., Beech, W., Teter, B., Wu, S., Sigel, J., Vinters, H. V., Frautschy, S. A., and Cole, G. M. 1998. Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer's disease. Am. J. Pathol. 152:379–389.PubMedGoogle Scholar
  54. 54.
    Estus, S., Tucker, H. M., van Rooyen, C., Wright, S., Brigham, E. F., Wogulis, M., and Rydel, R. E. 1997. Aggregated amyloid-β protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction. J. Neurosci. 17:7736–7745.PubMedGoogle Scholar
  55. 55.
    Kienlen-Campard, P., Miolet, S., Tasiaux, B., and Octave, J. N. 2002. Intracellular amyloid-β 1–42, but not extracellular soluble amyloid-β peptides, induces neuronal apoptosis. J. Biol. Chem. 277:15666–15670.PubMedGoogle Scholar
  56. 56.
    Tamagno, E., Parola, M., Guglielmotto, M., Santoro, G., Bardini, P., Marra, L., Tabaton, M., and Danni, Q. 2003. Multiple signaling events in amyloid β-induced, oxidative stress-dependent neuronal apoptosis. Free Rad. Biol. Med. 35:45–58.PubMedGoogle Scholar
  57. 57.
    Roth, K. A. 2001. Caspases, apoptosis, and Alzheimer disease: Causation, correlation, and confusion. J. Neuropathol. Exp. Neurol. 60:829–838.PubMedGoogle Scholar
  58. 58.
    Kim., T. W., Pettingell, W. H., Jung, Y. K., Kovacs, D. M., and Tanzi, R. E. 1997. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277:373–376.PubMedGoogle Scholar
  59. 59.
    Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., LeBlanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van Der Ploeg, L. H., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., and Nicholson, D. W. 1999. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97:395–406.PubMedGoogle Scholar
  60. 60.
    Regeur, L., Jensen, G. B., Pakkenberg, H., Evans, S. M., and Pakkenberg, B. 1994. No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer's type. Neurobiol. Aging 15:347–352.PubMedGoogle Scholar
  61. 61.
    Ibanez. V., Pietrini, P., Alexander, G. E., Furey, M. L., Teichberg, D., Rajapakse, J. C., Rapoport, S. I., Schapiro, M. B., and Horwitz, B. 1998. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 50:1585–1593.PubMedGoogle Scholar
  62. 62.
    de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., and Wands, J. R. 2000. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Lab. Invest. 80:1323–1335.PubMedGoogle Scholar
  63. 63.
    Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R. L., Atwood, C. S., Johnson, A. B., Kress, Y., Vinters, H. V., Tabaton, M., Shimohama, S., Cash, A. D., Siedlak, S. L., Harris, P. L., Jones, P. K., Peterson, R. B., Perry, G., and Smith, M. A. 2001. Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21:3017–3023.PubMedGoogle Scholar
  64. 64.
    Anandatheerthavarada, H. K., Biswas, G., Robin, M. A., and Avadhani, N. G. 2003. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161:41–54.PubMedGoogle Scholar
  65. 65.
    Khan, S. M., Cassarino, D. S., Abramova, N. N., Keeney, P. M., Borland, M. K., Trimmer, P. A., Krebs, C. T., Bennett, J. C., Parks, J. K., Swerdlow, R. H., Parker, W. D. Jr., and Bennett, J. P. Jr. 2000. Alzheimer's disease cybrids replicate β-amyloid abnormalities through cell death pathways. Ann. Neurol. 48:148–155.PubMedGoogle Scholar
  66. 66.
    Trimmer, P. A., Swerdlow, R. H., Parks, J. K., Keeney, P., Bennett, J. P. Jr., Miller, S. W., Davis, R. E., and Parker, W. D. Jr., 2000. Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines. Exp. Neurol. 162:37–50.PubMedGoogle Scholar
  67. 67.
    Lin, M. T., Simon, D. K., Ahn, C. H., Kim, L. M., and Beal, M. F. 2002. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum. Mol. Genet. 11:133–145.PubMedGoogle Scholar
  68. 68.
    Gibson, G. E., Zhang, H., Sheu, K. F., Bogdanovich, N., Lindsay, J. G., Lannfelt, L., Vestling, M., and Cowburn, R. F. 1998. ά-Ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann. Neurol. 44:676–681.PubMedGoogle Scholar
  69. 69.
    Sheu, K. F., Kim, Y. T., Blass, J. P., and Weksler, M. E. 1985. An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer's disease brain. Ann. Neurol. 17:444–449.PubMedGoogle Scholar
  70. 70.
    Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., Wilson, J. M., DiStefano, L. M., and Nobrega, J. N. 1992. Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem. 59:776–779.PubMedGoogle Scholar
  71. 71.
    Mutisya, E. M., Bowling, A. C., and Beal, M. F. 1994. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J. Neurochem. 63:2179–2184.PubMedGoogle Scholar
  72. 72.
    Chandrasekaran, K., Hatanpaa, K., Brady, D. R., and Rapoport, S. I. 1996. Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease. Exp. Neurol. 142:80–88.PubMedGoogle Scholar
  73. 73.
    Bedetti, C. D. 1985. Immunocytochemical demonstration of cytochrome c oxidase with an immunoperoxidase method: A specific stain for mitochondria in formalin-fixed and paraffin-embedded human tissues. J. Histochem. Cytochem. 33:446–452.PubMedGoogle Scholar
  74. 74.
    Parker, W. D. Jr., Mahr, N. J., Filley, C. M., Parks, J. K., Hughes, D., Young, D. A., and Cullum, C. M. 1994. Reduced platelet cytochrome c oxidase activity in Alzheimer's disease. Neurology. 44:1086–1090.PubMedGoogle Scholar
  75. 75.
    Askanas, V., McFerrin, J., Baqué, S., Alvarez, R. B., Sarkozi, E., and Engel, W. K. 1996. Transfer of β-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc. Natl. Acad. Sci. USA 93:1314–1319.PubMedGoogle Scholar
  76. 76.
    Grant, S. M., Shankar, S. L., Chalmers-Redman, R. M., Tatton, W. G., Szyf, M., and Cuello, A. C. 1999. Mitochondrial abnormalities in neuroectodermal cells stably expressing human amyloid precursor protein (hAPP751). Neuroreport 10:41–46.PubMedGoogle Scholar
  77. 77.
    Pereira, C., Santos, M. S., and Oliveira, C. 1998. Mitochondrial function impairment induced by amyloid β-peptide on PC12 cells.Neuroreport 9:1749–1755.PubMedGoogle Scholar
  78. 78.
    Canevari, L., Clark, J. B., and Bates, T. E. 1999. β-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457:131–134.PubMedGoogle Scholar
  79. 79.
    Casley, C. S., Canevari, L., Land, J. M., Clark, J. B., and Sharpe, M. A. 2002. β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80:91–100.PubMedGoogle Scholar
  80. 80.
    Cardoso, S. M., Santos, S., Swerdlow, R. H., and Oliveira, C. R. 2001. Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J. 15:1439–1441.PubMedGoogle Scholar
  81. 81.
    Shevtzova, E. F., Kireeva, E. G., and Bachurin, S. O. 2001. Effect of β-amyloid peptide fragment 25–35 on nonselective permeability of mitochondria. Bull. Exp. Biol. Med. 132:1173–1176.PubMedGoogle Scholar
  82. 82.
    Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. M. 1977. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180: 248–257.PubMedGoogle Scholar
  83. 83.
    Gabuzda, D., Busciglio, J., Chen, L. B., Matsudaira, P., and Yankner, B. A. 1994. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J. Biol. Chem. 269: 13623–13628.PubMedGoogle Scholar
  84. 84.
    Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. 1997. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17:2653–2657.PubMedGoogle Scholar
  85. 85.
    Varadarajan, S., Yatin, S., Aksenova, M., and Butterfield, D. A. 2000. Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 30:184–208.Google Scholar
  86. 86.
    Kish, S. J. 1997. Brain energy metabolizing enzymes in Alzheimer's disease: ά-Ketoglutarate dehydrogenase complex and cytochrome oxidase: Ann. NY Acad. Sci., 826:218–228.PubMedGoogle Scholar
  87. 87.
    Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. 2000. The ά-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem. Int. 36:97–112.PubMedGoogle Scholar
  88. 88.
    Tretter, L., and Adam-Vizi, V. 2000. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of ά-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 20:8972–8979.PubMedGoogle Scholar
  89. 89.
    Harris, M. E., Wang, Y., Pedigo, N. W. Jr., Hensley, K., Butterfield, D. A., and Carney, J. M. 1996. Amyloid β peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem. 67:277–286.PubMedGoogle Scholar
  90. 90.
    Abe, K. and Misawa, M. 2003. Amyloid β protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci. Res. 45:25–31.PubMedGoogle Scholar
  91. 91.
    Cecchi, C., Latorraca, S., Sorbi, S., lantomasi, T., Favilli, F., Vincenzini, M. T., and Liguri, G. 1999. Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease. Neurosci. Lett. 275:152–154.PubMedGoogle Scholar
  92. 92.
    Muller, W. E., Romero, F. J., Perovic, S., Pergande, G., and Pialoglou, P. 1997. Protection of flupirtine on β-amyloid-induced apoptosis in neuronal cells in vitro: Prevention of amyloid-induced glutathione depletion. J. Neurochem. 68:71–77.Google Scholar
  93. 93.
    Abramov, A. Y., Canevari, L., and Duchen, M. R. 2003. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23:5088–5095.PubMedGoogle Scholar
  94. 94.
    Keelan, J., Allen, N. J., Antcliffe, D., Pal, S., and Duchen, M. R. 2001. Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J. Neurosci. Res. 66:873–884.PubMedGoogle Scholar
  95. 95.
    Dringen, R. and Hirrlinger, J. 2003. Glutathione pathways in the brain. Biol. Chem. 384:505–516.PubMedGoogle Scholar
  96. 96.
    Barkats, M., Millecamps, S., Abrioux, P., Geoffroy, M. C., and Mallet, J. 2000. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Aβ-mediated neurotoxicity. J. Neurochem. 75:1438–1446.PubMedGoogle Scholar
  97. 97.
    Benzi, G. and Moretti, A. 1995. Are reactive oxygen species involved in Alzheimer's disease? Neurobiol. Aging 16:661–674.PubMedGoogle Scholar
  98. 98.
    Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Romano, D. M., Hartshorn, M. A., Tanzi, R. E., and Bush, A. I. 1998. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273:12817–12826.PubMedGoogle Scholar
  99. 99.
    Cuajungco, M. P., Goldstein, L. E., Nunomura, A., Smith, M. A., Lim, J. T., Atwood, C. S., Huang, X., Farrag, Y. W., Perry, G., and Bush, A. I. 2000. Evidence that the β-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of Aβ by zinc. J. Biol. Chem. 275:19439–19442.PubMedGoogle Scholar
  100. 100.
    Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y., Huang, X., Goldstein, L. E., Moir, R. D., Lim, J. I., Beyreuther, K., Zheng, H., Tanzi, R. E., Masters, C. L., and Bush, A. I. 2001. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665–676.PubMedGoogle Scholar
  101. 101.
    Melov, S. 2002. ' ... and C is for Clioquinol': The AβCs of Alzheimer's disease. Trends Neurosci. 25:121–123.PubMedGoogle Scholar
  102. 102.
    Sheehan, J. P., Swerdlow, R. H., Miller, S. W., Davis, R. E., Parks, J. K., Parker, W. D., and Tuttle, J. B. 1997. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J. Neurosci. 17:4612–4622.PubMedGoogle Scholar
  103. 103.
    Meda, L., Bonaiuto, C., Baron, P., Otvos, L. Jr., Rossi, F., and Cassatella, M. A. 1996. Priming of monocyte respiratory burst by β-amyloid fragment (25–35). Neurosci. Lett. 219:91–94.PubMedGoogle Scholar
  104. 104.
    Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B., and Posmantur, R. 2003. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278:13309–13317.PubMedGoogle Scholar
  105. 105.
    Husemann, J. and Silverstein, S. C. 2001. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer's disease brain. Am. J. Pathol. 158:825–832.PubMedGoogle Scholar
  106. 106.
    El Khoury, J. B., Moore, K. J., Means, T. K., Leung, J., Terada, K., Toft, M., Freeman, M. W., and Luster, A. D. 2003. CD36 mediates the innate host response to β-amyloid. J. Exp. Med. 197:1657–1666.PubMedGoogle Scholar
  107. 107.
    Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., and Wautier, J. L. 2001. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280:E685–694.PubMedGoogle Scholar
  108. 108.
    Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., and Schmidt, A. M. 1996. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382:685–691.PubMedGoogle Scholar
  109. 109.
    Lee, M., You, H. J., Cho, S. H., Woo, C. H., Yoo, M. H., Joe, E. H., and Kim, J. H. 2002. Implication of the small GTPase Rac1 in the generation of reactive oxygen species in response to β-amyloid in C6 astroglioma cells. Biochem. J. 366:937–943.PubMedGoogle Scholar
  110. 110.
    Pocock, J. M. and Liddle, A. C. 2001. Microglial signalling cascades in neurodegenerative disease. Prog. Brain Res. 132:555–565.PubMedGoogle Scholar
  111. 111.
    Ho, R., Ortiz, D., and Shea, T. B. 2001. Amyloid-β promotes calcium influx and neurodegeneration via stimulation of L voltage-sensitive calcium channels rather than NMDA channels in cultured neurons. J. Alzheimers Dis. 3:479–483.PubMedGoogle Scholar
  112. 112.
    Rovira, C., Arbez, N., and Mariani, J. 2002. Aβ(25–35) and Aβ(1–40) act on different calcium channels in CA1 hippocampal neurons. Biochem. Biophys. Res. Commun. 296:1317–1321.PubMedGoogle Scholar
  113. 113.
    Green, K. N. and Peers, C. 2001. Amyloid β peptides mediate hypoxic augmentation of Ca2+ channels. J. Neurochem. 77:953–956.PubMedGoogle Scholar
  114. 114.
    Kasparova, J., Lisa, V., Tuček, S., and Dolezal, V. 2001. Chronic exposure of NG108-15 cells to amyloid β peptide (Aβ1–42) abolishes calcium influx via N-type calcium channels. Neurochem. Res. 26:1079–1084.PubMedGoogle Scholar
  115. 115.
    Huang, H. M., Ou, H. C., and Hsieh, S. J. 2000. Antioxidants prevent amyloid peptide-induced apoptosis and alteration of calcium homeostasis in cultured cortical neurons. Life Sci. 66:1879–1892.PubMedGoogle Scholar
  116. 116.
    Kelly, J. F., Furukawa, K., Barger, S. W., Rengen, M. R., Mark, R. J., Blanc, E. M., Roth, G. S., and Mattson, M. P. 1996. Amyloid β-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93:6753–6758.PubMedGoogle Scholar
  117. 117.
    Pike, C. J., Balazs, R., and Cotman, C. W. 1996. Attenuation of β-amyloid neurotoxicity in vitro by potassium-induced depolarization. J. Neurochem. 67:1774–1777.PubMedGoogle Scholar
  118. 118.
    Blanchard, B. J., Konopka, G., Russell, M., and Ingram, V. M. 1997. Mechanism and prevention of neurotoxicity caused by β-amyloid peptides: Relation to Alzheimer's disease. Brain Res. 776:40–50.PubMedGoogle Scholar
  119. 119.
    Arispe, N., Pollard, H. B., and Rojas, E. 1993. Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein [AβP-(1–40)] in bilayer membranes. Proc. Natl. Acad. Sci. USA 90:10573–10577.PubMedGoogle Scholar
  120. 120.
    Rhee, S. K., Quist, A. P., and Lal, R. 1998. Amyloid β protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel. J. Biol. Chem. 273:13379–13382.PubMedGoogle Scholar
  121. 121.
    Arispe, N., Pollard, H. B., and Rojas, E. 1996. Zn2+ interaction with Alzheimer amyloid β protein calcium channels. Proc. Natl. Acad. Sci. USA 93:1710–1715.PubMedGoogle Scholar
  122. 122.
    Bush, A. J. 2003. The metallobiology of Alzheimer's disease. Trends Neurosci. 26:207–214.PubMedGoogle Scholar
  123. 123.
    Lin, H., Bhatia, R., and Lal, R. 2001. Amyloid β protein forms ion channels: Implications for Alzheimer's disease pathophysiology. FASEB J. 15:2433–2444.PubMedGoogle Scholar
  124. 124.
    Bhatia, R., Lin, H., and Lal, R. 2000. Fresh and globular amyloid β protein (1–42) induces rapid cellular degeneration: Evidence for AβP channel-mediated cellular toxicity. FASEB J. 14:1233–1243.PubMedGoogle Scholar
  125. 125.
    Arispe, N. and Doh, M. 2002. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer's disease AβP (1–40) and (1–42) peptides FASEB J. 16:1526–1536.PubMedGoogle Scholar
  126. 126.
    Kawahara, M. and Kuroda, Y. 2001. Intracellular calcium changes in neuronal cells induced by Alzheimer's β-amyloid protein are blocked by estradiol and cholesterol. Cell. Mol. Neurobiol. 21:1–13.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Laura Canevari
    • 1
    • 2
  • Andrey Y. Abramov
    • 1
  • Michael R. Duchen
    • 1
  1. 1.Division of NeurochemistryInstitute of NeurologyLondonUnited Kingdom
  2. 2.Mitochondrial Biology Group, Department of PhysiologyUCLLondonUnited Kingdom

Personalised recommendations