Skip to main content
Log in

Substantial Linkage Disequilibrium Across the Dihydrolipoyl Succinyltransferase Gene Region Without Alzheimer's Disease Association

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Association of the candidate gene DLST with late-onset Alzheimer's disease (LOAD) risk has been suggested on the basis of case-control studies. This gene, located on chromosome 24q24.3, encodes a subunit of a mitochondrial component known to be defective in AD, the α-ketoglutarate dehydrogenase complex. Positive reports have correlated different DLST alleles with LOAD, whereas other groups have failed to find any significant association. We therefore reexamined the association of DLST and LOAD in a more ethnically homogeneous series using three additional single nucleotide polymorphisms (SNP) located within or closely flanking either end of the DLST gene. Pairwise analysis of these SNPs indicated there was strong linkage disequilibrium across the DLST locus. Analysis of complex genotypes or haplotypes based upon all five SNP loci failed to identify a LOAD risk allele, suggesting that further studies of DLST in relation to AD are not warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson, G. E., Sheu, K. F., Blass, J. P., Baker, A., Carlson, K. C., Harding, B., and Perrino, P. 1988. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch. Neurol. 45:836–840.

    PubMed  Google Scholar 

  2. Mastrogiacoma, F., Lindsay, J. G., Bettendorff, L., Rice, J., and Kish, S. J. 1996. Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer's disease. Ann. Neurol. 39:592–598.

    PubMed  Google Scholar 

  3. Gibson, G. E., Haroutunian, V., Zhang, H., Park, L. C., Shi, Q., Lesser, M., Mohs, R. C., Sheu, R. K., and Blass, J. P. 2000. Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. Ann. Neurol. 48: 297–303.

    PubMed  Google Scholar 

  4. Nakano, K., Ohta, S., Nishimaki, K., Miki, T., and Matuda, S. 1997. Alzheimer's disease and DLST genotype. Lancet 350:1367–1368.

    Google Scholar 

  5. Ma, Q., Chan, P., and Yang, J. 2001. [Association between DLST gene polymorphism and Alzheimer's disease]. Zhonghua Yi Xue Za Zhi. 81:1246–1248.

    PubMed  Google Scholar 

  6. Kobayashi, T., Matsumine, H., Matuda, S., and Mizuno, Y. 1998. Association between the gene encoding the E2 subunit of the alpha-ketoglutarate dehydrogenase complex and Parkinson's disease. Ann. Neurol. 43:120–123.

    PubMed  Google Scholar 

  7. Sheu, K. F., Brown, A. M., Haroutunian, V., Kristal, B. S., Thaler, H., Lesser, M., Kalaria, R. N., Relkin, N. R., Mohs, R. C., Lilius, L., Lannfelt, L., and Blass, J. R. 1999. Modulation by DLST of the genetic risk of Alzheimer's disease in a very elderly population. Ann. Neurol. 45:48–53.

    PubMed  Google Scholar 

  8. Sheu, K. F., Brown, A. M., Kristal, B. S., Kalaria, R. N., Lilius, L., Lannfelt, L., and Blass, J. P. 1999. A DLST genotype associated with reduced risk for Alzheimer's disease. Neurology 52:1505–1507.

    PubMed  Google Scholar 

  9. Kunugi, H., Nanko, S., Ueki, A., Isse, K., and Hirasawa, H. 1998. DLST gene and Alzheimer's disease. Lancet 351:1584–1585.

    Google Scholar 

  10. Matsushita, S., Arai, H., Yuzuriha, T., Kato, M., Matsui, T., Urakami, K., and Higuchi, S. 2001. No association between DLST gene and Alzheimer's disease or Wernicke-Korsakoff syndrome. Neurobiol. Aging 22:569–574.

    PubMed  Google Scholar 

  11. Prince, J. A., Feuk, L., Sawyer, S. L., Gottfries, J., Ricksten, A., Nagga, K., Bogdanovic, N., Blennow, K., and Brookes, A. J. 2001. Lack of replication of association findings in complex disease: An analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer's disease. Eur. J. Hum. Genet. 9:437–444.

    PubMed  Google Scholar 

  12. Haroutunian, V., Perl, D. P., Purohit, D. P., Marin, D., Khan, K., Lantz, M., Davis, K. L., and Mohs, R. C. 1998. Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. Arch. Neurol. 55:1185–1191.

    PubMed  Google Scholar 

  13. Morris, J. C., Ernesto, C., Schafer, K., Coats, M., Leon, S., Sano, M., Thal, L. J., and Woodbury, P. 1997. Clinical dementia rating training and reliability in multicenter studies: The Alzheimer's Disease Cooperative Study experience. Neurology 48:1508–1510.

    PubMed  Google Scholar 

  14. Moraes, C. T., Shanske, S., Tritschler, H. J., Aprille, J. R., Andreetta, F., Bonilla, E., Schon, E. A., and DiMauro, S. 1991. mtDNA depletion with variable tissue expression: A novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48:492–501.

    PubMed  Google Scholar 

  15. Wallace, D. C., Stugard, C., Murdock, D., Schurr, T., and Brown, M. D. 1997. Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations. Proc. Natl. Acad. Sci. USA 94:14900–14905.

    PubMed  Google Scholar 

  16. Hirano, M., Shtilbans, A., Mayeux, R., Davidson, M. M., DiMauro, S., Knowles, J. A., and Schon, E. A. 1997. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc. Natl. Acad. Sci. USA 94:14894–14899.

    PubMed  Google Scholar 

  17. Guo, S. W. and Thompson, E. A. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372.

    PubMed  Google Scholar 

  18. Zaykin, D., Zhivotovsky, L., and Weir, B. S. 1995. Exact tests for association between alleles at arbitrary numbers of loci. Genetica 96:169–178.

    PubMed  Google Scholar 

  19. Ott, J. 1999. Analysis of Human Genetic Linkage, The Johns Hopkins University Press, Baltimore, Md.

    Google Scholar 

  20. Gordon, D., Simonic, I., and Ott, J. 2000. Significant evidence for linkage disequilibrium over a 5-cM region among Afrikaners. Genomics 66:87–92.

    PubMed  Google Scholar 

  21. Terwilliger, J. D. and Ott, J. 1994, Handbook of Human Genetic Linkage, Johns Hopkins, Baltimore, Md.

    Google Scholar 

  22. Schaid, D. J. and Jacobsen, S. J. 1999. Biased tests of association: Comparisons of allele frequencies when departing from Hardy-Weinberg proportions [comment]. Am. J. Epidemiol. 149:706–711.

    PubMed  Google Scholar 

  23. Single, R. M., Meyer, D., Hollenbach, J. A., Nelson, M. P., Noble, J. A., Erlich, H. A., and Thomson, G. 2002. Haplotype frequency estimation in patient populations: The effect of departures from Hardy-Weinberg proportions and collapsing over a locus in the HLA region. Genet. Epidemiol. 22:186–195.

    PubMed  Google Scholar 

  24. Zhao, J. H., Curtis, D., and Sham, P. C. 2000. Model-free analysis and permutation tests for allelic associations. Hum. Hered. 50:133–139.

    PubMed  Google Scholar 

  25. Sasieni, P. D. 1997. From genotypes to genes: Doubling the sample size. Biometrics 53:1253–1261.

    PubMed  Google Scholar 

  26. Agresti, A. 2002, Categorical data analysis. Page 710, in Wiley Series in Probability and Statistics, John Wiley and Sons, Hoboken, NJ.

    Google Scholar 

  27. Akaike, H. 1973, Information theory and an extension of the maximum likelihood principle. Pages 267–281, in Petrov, B. N. and Csaki, F. (eds.), 2nd International Symposium on Information Theory Akademia Kiado, Budapest.

  28. Cochran, W. G. 1952. The chi-square test of goodness of fit. Ann. Math. Stat. 23:315–345.

    Google Scholar 

  29. Lewontin, R. C. 1964. The interaction of selection and linkage: I. General considerations: Heterotic models. Genetics 49:49–67.

    Google Scholar 

  30. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families [comment]. Science 261:921–923.

    PubMed  Google Scholar 

  31. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. 1993. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Nat. Acad. Sci. USA 90:1977–1981.

    PubMed  Google Scholar 

  32. Shimokata, H., Yamada, Y., Nakagawa, M., Okubo, R., Saido, T., Funakoshi, A., Miyasaka, K., Ohta, S., Tsujimoto, G., Tanaka, M., Ando, F., and Niino, N. 2000. Distribution of geriatric disease-related genotypes in the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J. Epidemiol. 10:S46–S55.

    PubMed  Google Scholar 

  33. Cruts, M., Backhovens, H., Van Gassen, G., Theuns, J., Wang, S. Y., Wehnert, A., van Duijn, C. M., Karlsson, T., Hofman, A., Adolfsson, R., and et al. 1995. Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease. Neurosci. Lett. 199:73–77.

    PubMed  Google Scholar 

  34. Trikka, D., Fang, Z., Renwick, A., Jones, S. H., Chakraborty, R., Kimmel, M., and Nelson, D. L. 2002. Complex SNP-based haplotypes in three human helicases: Implications for cancer association studies. Genome Res. 12:627–639.

    PubMed  Google Scholar 

  35. Fullerton, S. M., Clark, A. G., Weiss, K. M., Nickerson, D. A., Taylor, S. L., Stengard, J. H., Salomaa, V., Vartiainen, E., Perola, M., Boerwinkle, E., and Sing, C. E. 2000. Apolipoprotein E variation at the sequence haplotype level: Implications for the origin and maintenance of a major human polymorphism. Am. J. Hum. Genet. 67:881–900.

    PubMed  Google Scholar 

  36. Schellenberg, G. D., D'Souza, I., and Poorkaj, P. 2000. The genetics of Alzheimer's disease. Curr. Psychiatry Rep. 2:158–164.

    PubMed  Google Scholar 

  37. Ward, C. P., Fensom, A. H., and Green, P. M. 2000. Biallelic discrimination assays for the three common Ashkenazi Jewish mutations and a common non-Jewish mutation, in Tay-Sachs disease, using fluorogenic TaqMan probes. Genet. Test. 4:351–358.

    PubMed  Google Scholar 

  38. Bahar, A. Y., Taylor, P. J., Andrews, L., Proos, A., Burnett, L., Tucker, K., Friedlander, M., and Buckley, M. F. 2001. The frequency of founder mutations in the BRCA1, BRCA2, and APC genes in Australian Ashkenazi Jews: Implications for the generality of U.S. population data. Cancer 92:440–445.

    PubMed  Google Scholar 

  39. Bassett, S. S., Avramopoulos, D., and Fallin, D. 2002. Evidence for parent of origin effect in late-onset Alzheimer disease. Am. J. Med. Genet. 114:679–686.

    PubMed  Google Scholar 

  40. Brown, A. M., Gordon, D., Lee, H., Caudy, M., Hardy, J., Haroutunian, V., and Blass, J. P. 2004. Association of the dihydrolipoamide dehydrogenase gene with Alzheimer's disease in an Ashkenazi Jewish population. Am. J. Med. Genet. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham M. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, A.M., Gordon, D., Lee, H. et al. Substantial Linkage Disequilibrium Across the Dihydrolipoyl Succinyltransferase Gene Region Without Alzheimer's Disease Association. Neurochem Res 29, 629–635 (2004). https://doi.org/10.1023/B:NERE.0000014833.54481.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000014833.54481.1d

Navigation