Skip to main content
Log in

Neurodegeneration or Neuroprotection: The Pivotal Role of Astrocytes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Formation of nitric oxide (NO), by astrocytes, has been suggested to contribute, via impairment of mitochondrial function, to the neurodegnerative process. Thus co-culture of neuronal cells with NO–generating astrocytes leads to a loss of mitochondrial function, as reflected by diminished activities of complexes IV and II+III. However, such damage may in the first instance be limited due to upregulation of neuronal glutathione metabolism as a result of metabolic trafficking of glutathione from the astrocyte to neurone. Furthermore, exposure of astrocytes to NO leads to increased glutathione metabolism resulting in the preservation of glutathione precursors for neuronal utilization. Failure of glutathione trafficking could render neuronal cells particularly susceptible to NO, leading to cell death. In addition, depletion with time of the nitric oxide synthase cofactor, tetrahydrobiopterin, may result in the astrocytic generation of more potent oxidizing species, which could contribute to the neurodegenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knowles, R. G. and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J. 298:249–258.

    PubMed  Google Scholar 

  2. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. I., Galea, E., Reis, D. J., Minc-Golomb, D., and Schwartz, J. P. 1993. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16:323–328.

    PubMed  Google Scholar 

  3. Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M., and Clark, J. B. 1994. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63:910–916.

    PubMed  Google Scholar 

  4. Hevel, J. M. and Marletta, M. A. 1992. Macrophage nitric oxide synthase: Relationship between enzyme-bound tetrahydrobiopterin and synthase activity. Biochemistry 31:7160–7165.

    PubMed  Google Scholar 

  5. Vega-Agapito, V., Almeida, A., Hatzoglou, M., and Bolanos, J. P. 2002. Peroxynitrite stimulates L-arginine transport system y(+) in glial cells: A potential mechanism for replenishing neuronal L-arginine. J. Biol. Chem. 277:29753–29759.

    PubMed  Google Scholar 

  6. Sakai, N., Kaufman, S., and Milstien, S. 1995. Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J. Neurochem. 65:895–902.

    PubMed  Google Scholar 

  7. Brown, G. C., Bolanos, J. P., Heales, S. J., and Clark, J. B. 1995. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci. Lett. 193:201–204.

    PubMed  Google Scholar 

  8. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Losealzo, J., Singel, D. J., Stamler, J. S. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    PubMed  Google Scholar 

  9. Boveris, A. and Chance, B. 1973. The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbaric oxygen. Biochem. J. 134:707–716.

    PubMed  Google Scholar 

  10. Hunot, S., Boissiere, E., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., and Hirsch, E. C. 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72:355–363.

    PubMed  Google Scholar 

  11. Shergill, J. K., Cammack, R., Cooper, C. E., Cooper, J. M., Mann, V. M., and Schapira, A. H. 1996. Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson's disease. Biochem. Biophys. Res. Commun. 12:298–305.

    Google Scholar 

  12. Good, P. F., Hsu, A., Werner, P., Perl, D. P., and Olanow, C. W. 1998. Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57:338–342.

    PubMed  Google Scholar 

  13. Giasson, B. I., Duda, J. E., Murray, J. V., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q., and Lee, V. M. 2000. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989.

    PubMed  Google Scholar 

  14. Qureshi, G. A., Baia, S. M., and Parvez, S. 1998. Neurotoxicity and possible roles of aspartic acid, glutamic acid and GABA in some neurological disorders. Biogenic Amines 13:565–568.

    Google Scholar 

  15. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823–827.

    PubMed  Google Scholar 

  16. Bywood, P. T. and Johnson, S. M. 2003. Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices. Exp. Neurol. 79:47–59.

    Google Scholar 

  17. Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., and Marsden, C. D. 1992. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease: The Royal Kings and Queens Parkinson's Disease Research Group. Ann. Neurol. 32:S82–S87.

    PubMed  Google Scholar 

  18. Heales, S. J. and Bolanos, J. P. 2002. Impairment of brain mitochondrial function by reactive nitrogen species: The role of glutathione in dictating susceptibility. Neurochem. Int. 40:469–474.

    PubMed  Google Scholar 

  19. Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. 1997. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17:2653–2657.

    PubMed  Google Scholar 

  20. Vodovotz, Y., Lucia, M. S., Flanders, K. C., Chesler, L., Xie, O. W., Smith, T. W., Weidner, J., Mumford, R., Webber, R., Nathan, C., Roberts, A. B., Lippa, C. F., and Sporn, M. B. 1996. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184:1425–1433.

    PubMed  Google Scholar 

  21. Luth, H. J., Munch, G., and Arendt, T. 2002. Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation. Brain Res. 953:135–143.

    PubMed  Google Scholar 

  22. Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, E., Chang, L. J., Wilson, J. M., DiStefano, L. M., and Nobrega, J. N. 1992. Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem. 59:776–779.

    PubMed  Google Scholar 

  23. Canevari, L., Clark, J. B., and Bates, T. E. 1999. Beta-amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457:131–134.

    PubMed  Google Scholar 

  24. Casley, C. S., Canevari, L., Land, J. M., Clark, J. B., and Sharpe, M. A. 2002. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80:91–100.

    PubMed  Google Scholar 

  25. Keilin, D. and Hartree, E. F. 1939. Cytochrome and cytochrome oxidase. Proc. R. Soc. Lond. B Biol. Sci. 127:167–191.

    Google Scholar 

  26. Brown, G. C. and Cooper, C. E. 1994. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356:295–298.

    PubMed  Google Scholar 

  27. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481–487.

    PubMed  Google Scholar 

  28. Paradies, G., Petrosillo, G., Pistolese, M., and Ruggiero, F. M. 2000. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett. 466:323–326.

    PubMed  Google Scholar 

  29. Heales, S. J., Bolanos, J. P., Land, J. M., and Clark, J. B. 1994. Trolox protects mitochondrial complex IV from nitric oxide-mediated damage in astrocytes. Brain Res. 668:243–245.

    PubMed  Google Scholar 

  30. Bolanos, J. P., Heales, S. J., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64:1965–1972.

    PubMed  Google Scholar 

  31. Bolanos, J. P., Heales, S. J., Peuchen, S., Barker, J. E., Land, J. M., and Clark, J. B. 1996. Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione. Free Radic. Biol. Med. 21:995–1001.

    PubMed  Google Scholar 

  32. Cassina, A. and Radi, R. 1996. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328:309–316.

    PubMed  Google Scholar 

  33. White, D. A. 1973. The phospholipid composition of mammalian tissues. Pages 441–482, in Ansell, G. B., Hawthorne, J. N., Dawson, R. M. C. (Eds), Form and Function of phospholipids, Vol 3. Elsevier, Amsterdam.

    Google Scholar 

  34. Brookes, P. S., Land, J. M., Clark, J. B., and Heales, S. J. 1998. Peroxynitrite and brain mitochondria: Evidence for increased proton leak. J. Neurochem. 70:2195–2202.

    PubMed  Google Scholar 

  35. Barker, J. E., Bolanos, J. P., Land, J. M., Clark, J. B., and Heales, S. J. 1996. Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: Implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci. 18:391–396.

    PubMed  Google Scholar 

  36. Rahman, S., Hargreaves, I., Clayton, P., and Heales, S. 2001. Neonatal presentation of coenzyme Q10 deficiency. J. Pediatr. 139:456–458.

    PubMed  Google Scholar 

  37. Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E. 1994. Nitric oxide as a potential pathological mechanism in demyelination: Its differential effects on primary glial cells in vitro. Neuroscience 61:575–585.

    PubMed  Google Scholar 

  38. Almeida, A., Almeida, J., Bolanos, J. P., and Moncada, S. 2001. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98:15294–15299.

    PubMed  Google Scholar 

  39. Gegg, M. E., Beltran, B., Salas-Pino, S., Bolanos, J. P., Clark, J. B., Moncada, S., and Heales, S. J. 2003. Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: Implications for neuroprotection/neurodegneration. J. Neurochem. 86:228–237.

    PubMed  Google Scholar 

  40. Dringen, R., Pfeiffer, B., and Hamprecht, B. 1999. Synthesis of the antioxidant glutathione in neurons: Supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19:562–569.

    PubMed  Google Scholar 

  41. Hirrlinger, J., Schulz, J. B., and Dringen, R. 2002. Glutathione release from cultured brain cells: Multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J. Neurosci. Res. 69:318–326.

    PubMed  Google Scholar 

  42. Dringen, R., Gutterer, J. M., Gros, C., and Hirrlinger, J. 2001. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J. Neurosci. Res. 66:1003–1008.

    PubMed  Google Scholar 

  43. Stewart, V. C., Stone, R., Gegg, M. E., Sharpe, M. A., Hurst, R. D., Clark, J. B., and Heales, S. J. 2002. Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J. Neurochem. 83:984–991.

    PubMed  Google Scholar 

  44. Stewart, V. C., Land, J. M., Clark, J. B., and Heales, S. J., 1998. Pretreatment of astrocytes with interferon-alpha/beta prevents neuronal mitochondrial respiratory chain damage. J. Neurochem. 70:432–443.

    PubMed  Google Scholar 

  45. Stewart, V. C., Sharpe, M. A., Clark, J. B., and Heales, S. J. 2000. Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J. Neurochem. 75:694–700.

    PubMed  Google Scholar 

  46. Cosentino, F., Barker, J. E., Brand, M. P., Heales, S. J., Werner, E. R., Tippins, J. R., West, N., Channon, K. M., Volpe, M., and Luscher, T. F. 2001. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21:496–502.

    PubMed  Google Scholar 

  47. Heales, S. J., Blair, J. A., Meinschad, C., and Ziegler, I. 1988. Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin and dihydroneopterin. Cell Biochem. Funct. 6:191–195.

    PubMed  Google Scholar 

  48. Barford, P. A., Blair, J. A., Eggar, C., Hammon, C., Morar, C., and Whitburn, S. B. 1984. Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type. J. Neurol. Neurosurg. Psychiatry 47:736–738.

    PubMed  Google Scholar 

  49. Lovenburg, W., Levine, R. A., Robinson, D. S., Ebert, M., Williams, A. C., and Calne, D. B. 1979. Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson's disease. Science 204:624–626.

    PubMed  Google Scholar 

  50. Delgado-Esteban, M., Almeida, A., and Medina, J. M. 2002. Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. J. Neurochem. 82:1148–1159.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. R. Heales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heales, S.J.R., Lam, A.A.J., Duncan, A.J. et al. Neurodegeneration or Neuroprotection: The Pivotal Role of Astrocytes. Neurochem Res 29, 513–519 (2004). https://doi.org/10.1023/B:NERE.0000014822.69384.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000014822.69384.0f

Navigation