Skip to main content
Log in

Arginine Administration Decreases Cerebral Cortex Acetylcholinesterase and Serum Butyrylcholinesterase Probably by Oxidative Stress Induction

  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present study we investigated the action of vitamins E and C on the inhibition of acetylcholinesterase and butyrylcholinesterase activities provoked by arginine in cerebral cortex and serum of 60-day-old rats. Animals were pretreated for 1 week with daily intraperitoneal administration of saline (control) or vitamins E (40 mg/kg) and C (100 mg/kg). Twelve hours after the last injection, animals received one injection of arginine (0.8 μM/g of body weight) or saline. Results showed that acetylcholinesterase and butyrylcholinesterase activities were decreased in the arginine-treated rats. Furthermore, pretreatment with vitamins E and C prevented these effects. The data indicate that the reduction of acetylcholinesterase and butyrylcholinesterase activities caused by arginine was probably mediated by oxidative stress. Assuming the possibility that these effects might also occur in the human condition, our findings may be relevant to explain, at least in part, the neurological dysfunction associated with hyperargininemia and might support a novel therapeutic strategy to slow the progression of neurodegeneration in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Brusilow, S. W. and Horwich, A. 2001. Urea cycle enzymes. Pages 1909–1963, in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, 8th ed, McGraw-Hill, New York.

    Google Scholar 

  2. Iyer, R., Jenkinson, C. P., Vockley, J. G., Kern, R. M., Grody, W. W., and Cederbaum, S. 1998. The human arginases and arginase deficiency. J. Inher. Metab. Dis. 21:86–100.

    Google Scholar 

  3. Prast, H. and Philippu, A. 2001. Nitric oxide as modulator of neuronal function. Progr. Neurobiol. 64:51–68.

    Google Scholar 

  4. Dawson, V. L. and Dawson, T. M. 1996. Nitric oxide neurotoxicity. J. Chem. Neuroanat. 10:179–190.

    Google Scholar 

  5. Yun, H. Y., Dawson, V. L., and Dawson, T. M. 1997. Nitric oxide in health and disease of the nervous system. Mol. Psychiatry. 2:300–310.

    Google Scholar 

  6. Dawson, V. L. and Dawson, T. M. 1996. Nitric oxide in neuronal degeneration. Proc. Soc. Exp. Biol. Med. 21:133–140.

    Google Scholar 

  7. Law, A., Gauthier, S., and Quirion, R. 2001. Say NO Alzheimer's disease: The putative links between nitric oxide and dementia of the Alzheimer's type. Brain. Res. Rev. 35:73–96.

    Google Scholar 

  8. Buchmann, I., Milakofsky, L., Harris, N., Hofford, J. M., and Vogel, W. H. 1996. Effect of arginine administration on plasma and brain levels of arginine and various related amino compounds in the rat. Pharmacology. 53:133–142.

    Google Scholar 

  9. Wyse, A. T. S., Bavaresco, C. S., Bandinelli, C., Streck, E. L., Franzon, R., Dutra-Filho, C. S., and Wajner, M. 2001. Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+,K+-ATPase in midbrain of rats subjected to arginine administration. Neurochem. Res. 26:515–520.

    Google Scholar 

  10. Delwing, D., Delwing, D., Dutra-Filho, C. S., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. 2002. Arginine administration reduces catalase activity in midbrain of rats. Neuroreport. 13:1301–1304.

    Google Scholar 

  11. Reis, E. A., de Oliveira, L. S., Lamers, M. L., Netto, C. A., and Wyse, A. T. S. 2002. Arginine administration inhibits hippocampal Na+,K+-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res. 951:151–157.

    Google Scholar 

  12. Everitt, B. J. and Robbins, T. W. 1997. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48:649–684.

    Google Scholar 

  13. Olney, J. W., Collins, R. C., and Sloviter, R. S. 1986. Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44:857–877.

    Google Scholar 

  14. Mack, A. and Robitzki, A. 2000. The key role of butyrylcholinesterase during neurogenesis and neural disorders: An antisense-5′butyrylcholinesterase-DNA study. Prog. Neurobiol. 60:607–628.

    Google Scholar 

  15. Atack, J. R., Perry, E. K., Bonham, J. R., Perry, R. H., Tomlinson, B. E., Blessed, C., and Fairbairn, A. 1983. Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: Selective loss of the intermediate (10S) form. Neurosci. Lett. 40:199–204.

    Google Scholar 

  16. Bowen, D. M. and Dawison, A. N. 1986. Biochemical studies of nerve cells and energy metabolism in Alzheimer's disease. Br. Med. Bull. 42:75–80.

    Google Scholar 

  17. Fishman, E. B., Siek, G. C., McCallum, R. D., Bird, E. D., Volicer, L., and Marquis, J. K. 1986. Distribution of the molecular forms of acetylcholinesterase in human brain: Alterations in dementia of the Alzheimer type. Ann. Neurol. 19:246–252.

    Google Scholar 

  18. Giacobini, E., Spiegel, R., Enz, A., Veroff, A. E., and Cutler, N. R. 2002. Inhibition of acetyl-and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer's disease by rivastigmine: Correlation with cognitive benefit. J. Neural. Transm. 109:1053–1065.

    Google Scholar 

  19. Tsakiris, S., Angelogianni, P., Schulpis, K. H., and Stavridis, J. C., 2000. Protective effect of l-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin. Biochem. 33:103–106.

    Google Scholar 

  20. Kale, M., Rathore, N., John, S., and Bhatnagar, D. 1999. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: A possible involvement of reactive oxygen species. Toxicol. Lett. 105:197–205.

    Google Scholar 

  21. Tappel, A. L. 1972. Vitamin E free radical peroxidation of lipids. Ann. NY Acad. Sci. 203:12–28.

    Google Scholar 

  22. Burton, G. W. and Traber, M. G. 1990. Antioxidant activity, biokinetics, and biovailability. Ann. Rev. Nutr. 10:357–380.

    Google Scholar 

  23. Vatassery, G. T. 1998. Vitamin E and other endogenous antioxidants in the central nervous system. Geriatrics 53 (Suppl. 1):25–27.

    Google Scholar 

  24. Meydani, M., Macauley, J. B., and Blumberg, J. B. 1988. Effect of dietary vitamin E and selenium on susceptibility of brain regions to lipid peroxidation. Lipids. 23:405–409.

    Google Scholar 

  25. Clement, M. and Bourre, J. M. 1997. Graded dietary levels of RRR-gamma-tocopherol induce a marked increase in the concentrations of alpha-tocopherol in nervous tissue, heart, liver and muscle on vitamin-E-deficient rats. Biochim. Biophys. Acta. 1334:173–181.

    Google Scholar 

  26. Stöcker, R. 1994. Lipoprotein oxidation: mechanistic aspects, methodological approaches and clinical relevance. Curr. Opin. Lipidol. 5:422–433.

    Google Scholar 

  27. Wyse, A. T. S., Zugno, A. I., Streck, E. L., Matté, C., Calcagnotto, T., Wannmacher, C. M. D., and Wajner, M. 2002. Inhibition of Na+,K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem. Res. 27:1677–1681.

    Google Scholar 

  28. Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  29. Rocha, J. B. T., Emanuelli, T., and Pereira, M. E. 1993. Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol. Exp. 53:431–437.

    Google Scholar 

  30. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-die binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  31. Turpaev, K. T. 2002. Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc.). 67:281–292.

    Google Scholar 

  32. Bavaresco, C. S., Calcagnotto, T., Tagliari, B., Delwing, D., Lamers, M. L., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. 2003. Brain Na+,K+-ATPase inhibition induced by arginine administration is prevented by vitamins E and C. Neurochem. Res. 28:825–829.

    Google Scholar 

  33. Bickford, P. C., Gould, T., Briederick, L., Chadman, K., Pollock, A., Young, D., Shukitt-Hale, B., and Joseph, J. 2000. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res. 866:211–217.

    Google Scholar 

  34. Cantuti-Castewlvetri, I., Shukitt-Hale, B., and Joseph, J. A. 2000. Neurobehavioral aspects of antioxidants in aging. Int. J. Devl. Neurosci. 18:367–381.

    Google Scholar 

  35. Jeyarasasingam, G., Yeluashvili, M., and Quik, M. 2000. Nitric oxide is involved in acetylcholinesterase inhibitor-induced myopathy in rats. J. Pharmacol. Exp. Ther. 295:314–320.

    Google Scholar 

  36. Hara, H., Kato, H., and Kogure, K. 1990. Protective effect of alpha-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res. 510:335–338.

    Google Scholar 

  37. Anderson, D. K., Waters, T. R., and Means, E. D. 1988. Pretreatment with alpha-tocopherol enhances neurologic recovery after experimental spinal cord compression injury. J. Neurotrauma 5:61–67.

    Google Scholar 

  38. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, S., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S., and Thal, L. J. 1997. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. New Engl. J. Med. 336:1216–1222.

    Google Scholar 

  39. Delwing, D., Chiarani, F., Delwing, D., Bavaresco, C. S., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. 2003. Proline reduces acetylcholinesterase activity in cerebral cortex of rats. Metab. Brain Dis. 18:79–86.

    Google Scholar 

  40. Reis, E. A., Zugno, A. I., Franzon, R., Tagliari, B., Matté, C., Lammers, M. L., Netto, C. A., and Wyse, A. T. S. 2002. Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab. Brain Dis. 17:211–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyse, A.T.S., Stefanello, F.M., Chiarani, F. et al. Arginine Administration Decreases Cerebral Cortex Acetylcholinesterase and Serum Butyrylcholinesterase Probably by Oxidative Stress Induction. Neurochem Res 29, 385–389 (2004). https://doi.org/10.1023/B:NERE.0000013741.81436.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000013741.81436.e8

Navigation