Skip to main content
Log in

Effects of the Combined Treatment of Naloxone and Indomethacin on Catecholamines and Behavior After Intranigral Lipopolysaccharide Injection

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study examined effects of the combined administration of naloxone (NX) and indomethacin (IM) on nigrostriatal catecholamines and locomotor activity after intranigral lipopolysaccharide (LPS) injection in Sprague-Dawley rats. NX plus IM was given 3 days after LPS injection; it significantly (P < .05) reversed LPS inflammation on nigrostriatal dopamine (DA) and nigral serotonin (5-HT) and nigral homovanillic acid (HVA)/DA ratio and nigrostriatal 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio. It also tended to ameliorate the locomotor hyperactivity. However, NX plus IM given 30 min before LPS could not satisfactorily protect against LPS's damage both biochemically and behaviorally. These results reveal that NX plus IM may protect against LPS on DA, 5-HT, and motor function after LPS injection but not before. Thus it suggests that the combined treatment of NX and IM gives a potent therapy, but not prevention, of LPS-induced inflammation and also protect nigrostriatal dopaminergic and serotoninergic systems against LPS in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Adolfsson, R., Gottfries, C. G., Roos, B. E., and Winblad, B. J. 1979. Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J. Neural. Transm. 45:81–105.

    Google Scholar 

  2. Hornykiewicz, O. 1989. Aging and neurotoxins as causative factors in idiopathic PD: A critical analysis of the neurochemical evidence. Prog. Neurol. Psychopharmacol. Biol. Psychiatry 13:319–328.

    Google Scholar 

  3. Kish, S. J., Shannak, K., and Hornykiewicz, O. 1988. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease: Pathophysiologic and clinical implications, New Engl. J. Med. 318:876–880.

    Google Scholar 

  4. Olanow, C. W. and Tatton, W. G. 1999. Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22:123–144.

    Google Scholar 

  5. Chia, L. G., Liu, S. P., and Lee, E. H. Y. 1992. Differential effects of deprenyl and MPTP on catecholamines and activity in BALB/C mice. Neuroreport 3:777–780.

    Google Scholar 

  6. Gerlach, M., Riederer, P., Przuntek, H., and Youdim, B. H. 1991. MPTP mechanism of neurotoxicity and their implications for Parkinson's disease. Eur. J. Pharmacol. 208:273–286.

    Google Scholar 

  7. Jenner, P., Rupniak, N. M. J., Rose, S., Kelly, E., Kilpatrick, G., Less, A., and Marsden, C. D. 1984. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in the common marmoset. Neurosci. Lett. 50:85–90.

    Google Scholar 

  8. Kordower, J. H., Felten, S. Y., Felten, D. L., and Gash, D. M. 1986. behavioral sequelae following MPTP administration in mice. Pages 413–417, in Markey, S. P., Castagnoli, N. J., Trevor, A. J., and Kopin, I. J. (eds.), MPTP: A Neurotoxin Producing a Parkinsonian Syndrome. Academic Press, New York.

    Google Scholar 

  9. Bronstein, D. M., Perez-Otano, I., Sun, V., Mullis-Sawin, S. B., Chan, J., Wu, G. C., Hudson, P. M., Kong, L. Y., Hong, J. S., and McMillian, M. K. 1995. Glia-dependent neurotoxicity and neuroprotection in mesencephalic culture. Brain Res. 704:112–116.

    Google Scholar 

  10. Liu, B., Du, L., and Hong, J. S. 2000. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J. Pharmcol. Exp. Ther. 293:607–617.

    Google Scholar 

  11. Castano, A., Herrera, A. J., Cano, J., and Machado, A. 1998. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem. 70:1584–1592.

    Google Scholar 

  12. Hsieh, P. F., Chia, L. G., Ni, D. R., Cheng, L. J., Ho, Y. P., Tzeng, S. F., Chang, M. H., and Hong, J. S. 2002. Behavior, neurochemistry and histology after intranigral lipopolysaccharide injection. Neuroreport 13:277–280.

    Google Scholar 

  13. Colasanti, M., Persichini, T., Di-Pucchio, T., Gremo, F., and Lauro, G. M. 1995. Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci. Lett. 200:144–146.

    Google Scholar 

  14. McNaught, K. S. P. and Jenner, P. 2000. Dysfunction of rat forebrain astrocytes in culture alters cytokine and neurotrophic factor release, Neurosci. Lett. 285:61–65.

    Google Scholar 

  15. McGeer, P. L., Itagaki, S., Boyes, B. E., and McGeer E. G. 1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brain. Neurology 38:1285–1291.

    Google Scholar 

  16. McGeer, P. L. and McGeer E. G. 1995. The inflammatory response system of brain: Implications for therapy of Alzeimer and other neurodegenerative diseases. Brain Res. Rev. 21:195–218.

    Google Scholar 

  17. Matyszak, M. K. 1998. Inflammation in the CNS: Balance between immunological privilege and immune response. Prog. Neurobiol. 56:19–35.

    Google Scholar 

  18. Feigenbaum, J. J. and Howard, S. G. 1996. The effect of naloxone on spontaneous and evoked dopamine release in the central and peripheral nervous system. Life Sci. 24:2009–2019.

    Google Scholar 

  19. Liu, B., Jian, J. W., Wilson, B. C., Du, L., Yan, S. N., Wang, J. Y., Wu, J. C., Cao, X. D., and Hong, J. S. 2000. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide, J. Pharmcol. Exp. Ther. 295:125–132.

    Google Scholar 

  20. Lu, X., Bing, X., and Hagg, T. 2000. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 97:285–291.

    Google Scholar 

  21. Kalmar, B., Kittel, A., Lemmens, R., Kornyei, Z., and Madarasz, E. 2001. Cultured astrocytes react to LPS with increased cyclooxygenase activity and phagocytosis. Neurochem. Int. 38:453–461.

    Google Scholar 

  22. Bicego, K. C., Steiner, A. A., Antunes-Rodrigues, J., and Branco, G. S. 2002. Indomethacin impairs LPS-induced behavioral fever in toads. J. Appl. Physiol. 93:512–516.

    Google Scholar 

  23. Montine, K. S., Montine, T. J., Morrow, J. D., Frei, B., Milatovic, D., Eckenstein, F., and Quinn, J. F. 2002. Mouse cerebral prostaglandins, but not oxidative damage, change with age and are responsive to indomethacin treatment. Brain Res. 930:75–82.

    Google Scholar 

  24. Rogers J., Kirby L., Hempelman S., Berry D., McGeer P., Kaszniak A., Zalinski J., Cofield, M., Mansukhani, L., and Willson, P. 1993. Clinical trial of indomethacin in Alzheimer's disease. Neurology 43:1609–1611.

    Google Scholar 

  25. Segal, D. S. and Kuczenski, R. 1974. Tyrosine hydroxylase activity: Regional and subcellular distribution in brain. Brain Res. 68:261–266.

    Google Scholar 

  26. Chia, L. G., Ni, D. R., Cheng, L. J., Kuo, J. S., Cheng, F. C., and Dryhurst, G. 1996. Effects of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine and 5,7-dihydroxytryptamine on the locomotor activity and striatal amines in C57BL/6 mice. Neurosci. Lett. 218:67–71.

    Google Scholar 

  27. Masana, M. I., Heyes, M. P., and Mefford, I. N. 1990. Indomethacin prevents increased catecholamine turnover in rat brain following systemic endotoxin challenge. Prog. Neuropsychopharmacol. Biol. Psychiatry 14:609–621.

    Google Scholar 

  28. Yurek, D. M., Deutch, A. Y., Roth, R. H., and Sladek, J. R. 1989. Morphological, neurochemical, and behavioral characterizations associated with the combined treatment of diethyldithiocarbamate and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res. 497:250–259.

    Google Scholar 

  29. Kouhata, S., Kagaya, A., Nakae, S., Nakata, Y., and Yamawaki, S. 2001. Effect of acute lipopolysaccharide administration on (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2 aminopropane-induced wet dog shake behavior in rats: Comparison with body weight change and locomotor activity. Prog. Neuropsychopharmacol. Biol. Psychiatry 25:395–407.

    Google Scholar 

  30. Chia, L. G., Ni, D. R., Cheng, F. C., Ho, Y. P., and Kuo, J. S. 1999. Intrastriatal injection of 5,7-dihydroxytryptamine decreased 5-HT levels in the striatum and suppressed locomotor activity in C57 BL/6 mice. Neurochem. Res. 24:719–722.

    Google Scholar 

  31. Smee, M. L., Weston, D. F., Skinner, T., and Day, T. 1975. Dose-related effects of central noradrenaline stimulation on behavioural arousal in rats. Psychopharmacol. Commun. 1:123–130.

    Google Scholar 

  32. Suwabe, A., Kubota, M., Niwa, M., Kobayashi, K., and Kanba, S. 2000. Effect of a 5-HT(1A) receptor agonist, flesinoxan, on the extracellular noradrenaline level in the hippocampus and on the locomotor activity of rats. Brain Res. 858:393–401.

    Google Scholar 

  33. You, Z. B., Herrera-Marschitz, M., Nulander, I., Goiny, M., Kehr, J., Ungerstedt, U., and Terenius, L. 1996. Effect of morphine on dynorphin B and GABA release in the basal ganglia of rats. Brain Res. 710:241–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie-Gan Chia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, V., Chia, LG., Ni, DR. et al. Effects of the Combined Treatment of Naloxone and Indomethacin on Catecholamines and Behavior After Intranigral Lipopolysaccharide Injection. Neurochem Res 29, 341–346 (2004). https://doi.org/10.1023/B:NERE.0000013736.80749.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000013736.80749.4b

Navigation