Skip to main content
Log in

Effect of DHEA Glutamate Release from Synaptosomes of Rats at Different Ages

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dehydroepiandrosterone (DHEA) exerts multiple effects in the central nervous system. Most of them seem to be mediated through their nongenomic actions on neurotransmitter receptors, and these actions occur within seconds or milliseconds. DHEA increases neuronal excitability, enhances neuronal plasticity, and has neuroprotective properties. By investigating glutamate release from synaptosomes of rats at different ages (from 17 days to 12 months), we observed that (i) there is an increase in basal and K+-stimulated l-[3H] glutamate release in rats at 12 months old, when compared to other ages; and (ii) there is an inhibitory effect of DHEA on basal l-[3H] glutamate release in 12 months old. This inhibitory effect of DHEA could be related to its reported protective role against excitotoxicity caused by overstimulation of the glutamatergic system and ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Izquierdo, I. and Medina, J. H. 1997. Memory formation: The sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn Mem. 68:285–316.

    Google Scholar 

  2. Ozawa, S., Kamiya, H., and Tsukuki, K. 1998. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54:581–618.

    Google Scholar 

  3. Anderson, C. M. and Swanson, R. A. 2000. Astrocyte glutamate transport: Review of properties, regulation and physiological functions. Glia 32:1–14.

    Google Scholar 

  4. Robinson, M. B. and Dowd, L. A. 1997. Heterogeneity and functional subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv. Pharmacol. 37:69–115.

    Google Scholar 

  5. Bole, D. G., Hirata, K., and Ueda, T. 2002. Prolonged depolarization of rat cerebral synaptosomes leads to an increase in vesicular glutamate content. Neurosci. Lett. 322:17–20.

    Google Scholar 

  6. Garcia-Sanz, A., Badia, A., and Clos, M. V. 2001. Superfusion of synaptosomes to study presynaptic mechanisms involved in neurotransmitter release from rat brain. Brain Res. Protoc. 7:94–102.

    Google Scholar 

  7. Baulieu, E. E. and Robel, P. 1998. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc. Natl. Acad. Sci. 95:4089–4091.

    Google Scholar 

  8. Bergeron, R., Montigny, C., and Debonnel, G. 1996. Potentiation of neural NMDA response induced by dehidroepiandrosterone and its supression by progesterone: Effects mediated via sigma receptors. J. N. Eurosci. 16:1193–1202.

    Google Scholar 

  9. Rupprecht, R. and Holsboer, F. 1999. Neuroactive steroids: Mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22:410–416.

    Google Scholar 

  10. Mellon, S. H. and Griffin, L. D. 2002. Neurosteroids: Biochemistry and clinical significance. Trends Endocrin. Metab. 13:35–44.

    Google Scholar 

  11. Kimonides, V. G., Khatibi, N. H., Svendesen, C. N., Sofroniew, M. V., and Herbert, J. 1998. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. 95:1852–1857.

    Google Scholar 

  12. Sutherland, G. R., Gary, A. D., and Auer, R. N. 1996. Effect of age in rodent models of focal and forebrain ischemia. Stroke 27:1663–1667.

    Google Scholar 

  13. Dunkley, P. R., Heath, J. W., Harrison, S. M., Jarvie, P. E., Glenfield, P. J., and Rostas, J. A. 1998. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fration: Homogeneity and morphology of subcellular fractions. Brain Res. 441:59–71.

    Google Scholar 

  14. Tavares, G. R., Tasca, I. C., Santos, S. E. C., Alves, B. L., Porciúncula, O. L., Emanuelli, T., and Souza, O. D. 2002. Quinilinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem. Int. 40:621–627.

    Google Scholar 

  15. Nagi, A. K., Shuster, T. A., and Delgado-Escueta, A. V. 1986. Ecto-ATPase of mammalian synaptosomes: Identification and enzymic characterization. J. Neurochem. 47:976–986.

    Google Scholar 

  16. Migues, V. P., Leal, B. R., Mantovani, M., Nicolau, M., and Gabilan, H. N. 1999. Synaptosomal glutamate release induced by the fraction Bc2 from the venom of the sea anemone Bunodosoma caissarum. Neuroreport 12:67–70.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  18. Ozkan, E. D. and Udea, T. 1998. Glutamate transport and storage in synaptic vesicles. Jpn J. Pharmacol. 77:1–10.

    Google Scholar 

  19. Segovia, G., Porras, A., Del Arco, A., and Mora, F. 2001. Glutamatergic neurotransmission in aging: A critical perspective. Mech. Ageing Dev. 122:1–29.

    Google Scholar 

  20. Nicholls D. G. 1998. Presynaptic modulation of glutamate release. Prog. Brain Res. 116:15–22.

    Google Scholar 

  21. Racchi, M., Govoni, S., Solerte, S. B., Carrado I. G., and Corsini, E. 2001. Dehydroepiandrosterone and the relationship with aging and memory: A possible link with protein kinase C functional machinery. Brain Res. Rev. 1:287–293.

    Google Scholar 

  22. Haberny, K. A., Paule, M. G., Scallet, A. C., Sistare, F. D., Lester, D. S., Hanig, J. P., and Slikker, W. Jr. 2002. Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibily to neurotoxicity. Toxicol. Sci. 68:9–17.

    Google Scholar 

  23. Mellon, S. H., Griffin, L. D., and Campagnone N. A. 2001. Biosynthesis and action of neurosteroids. Brain Res. Rev. 37:3–12.

    Google Scholar 

  24. Ueda, H., Akira, Y., Shogo, T., Kinobu, M., Junko, M., Kiyoshi, M., et al. 2001. Neurosteroids stimulate G protein-coupled sigma receptors in mouse brain synaptic membrane. Neurosci. Res. 41:33–40.

    Google Scholar 

  25. Lambert, J. J., Beletti, D., Hill-Venning, C., and Peters, J. A. 1995. Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16:295–303.

    Google Scholar 

  26. Meyer D. A., Carta, M., Partridge D. L., Covey, D. F., and Valenzuela, C. F. 2002. Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. J. Biol. Chem 277:28725–28732.

    Google Scholar 

  27. Cardounel, A., Regelson, W., and Kalimi, M. 1999. Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: Mechanism of action. Proc. Soc. Exp. Biol. Med. 222:145–149.

    Google Scholar 

  28. Bastianetto, S., Ramassamy, C., Poirier, J., and Quirion, R. 1999. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induce damage. Mol. Brain. Res. 66:35–41.

    Google Scholar 

  29. Wolf, T. O. and Kirschbaum, C. 1999. Actions of dehydroepiandrosterone and its sulfate in the central nervous system: Effects on cognition and emotion in animals and humans. Brain Res. Rev. 30:264–288.

    Google Scholar 

  30. Kurata, K., Takebayashi, M., Kagaya, A., Morinobu, S., and Yamawaki, S. 2001. Effect of β-estradiol on voltage-gate Ca+ channels in rat hippocampal neurons: A comparison with dehydroepiandrosterone. Eur. J. Pharmacol. 416:203–212.

    Google Scholar 

  31. Massieu, L. and Tapia, R. 1997. Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. J. Neurochem. 69:1151–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco L. R. Lhullier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhullier, F.L.R., Riera, N.G., Nicolaidis, R. et al. Effect of DHEA Glutamate Release from Synaptosomes of Rats at Different Ages. Neurochem Res 29, 335–339 (2004). https://doi.org/10.1023/B:NERE.0000013735.50736.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000013735.50736.0a

Navigation