Skip to main content
Log in

Antioxidant Properties of Sulfinates: Protective Effect of Hypotaurine on Peroxynitrite-Dependent Damage

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been proposed that hypotaurine may function as an antioxidant in vivo. We investigated whether this compound can act as protective agent able to prevent damage from peroxynitrite, a strong oxidizing and nitrating agent that reacts with several biomolecules. The results showed that the compound efficiently protects tyrosine against nitration, α1-antiproteinase against inactivation, and human low-density lipoprotein against modification by peroxynitrite. Hypotaurine is also highly effective in inhibiting peroxynitrite-mediated nitration of tyrosine in the presence of added bicarbonate. This result suggests that hypotaurine could play an important role as protective agent under physiological conditions. Moreover, it was found that cysteine sulfinic acid, but not taurine, possesses protective properties against peroxynitrite-dependent damage similar to hypotaurine. These findings indicate that the protective effects exerted by these compounds may be attributable to the presence of the sulfinic group oxidizable into sulfonate by scavenging peroxynitrite and/or its derived species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Huxtable, R. J. 1992. Physiological actions of taurine. Physiol. Rev. 72:101–163.

    Google Scholar 

  2. Ricci, G., Duprè, S., Federici, G., Spoto, G., Matarese, R. M., and Cavallini, D. 1978. Oxidation of hypotaurine to taurine by ultraviolet irradiation. Physiol. Chem. Phys. 10:435–441.

    Google Scholar 

  3. Fellman, J. H., Green, T. R., and Eicher, A. L. 1987. The oxidation of hypotaurine to taurine: bis-aminoethyl-γ-disulfone, a metabolic intermediate in mammalian tissue. Adv. Exp. Med. Biol. 217:39–48.

    Google Scholar 

  4. Learn, D. B., Fried, V. A., and Thomas, E. L. 1990. Taurine and hypotaurine content of human leukocytes. J. Leukoc. Biol. 48:174–182.

    Google Scholar 

  5. Duprè, S., Spirito, A., Sugahara, K., and Kodama, H. 1998. Hypotaurine oxidation: An HPLC-mass approach. Adv. Exp. Med. Biol. 442:3–8.

    Google Scholar 

  6. Pecci, L., Costa, M., Montefoschi, G., Antonucci, A., and Cavallini, D. 1999. Oxidation of hypotaurine with photochemically generated singlet oxygen: The effect of azide. Biochem. Biophys. Res. Commun. 254:661–665.

    Google Scholar 

  7. Pecci, L., Costa, M., Antonucci, A., Montefoschi, G., and Cavallini, D. 2000. Methylene blue photosensitized oxidation of cysteine sulfinic acid and other sulfinates: The involvement of singlet oxygen and the azide paradox. Biochem. Biophys. Res. Commun. 270:782–786.

    Google Scholar 

  8. Fellman, J. H. and Roth, E. S. 1985. The biological oxidation of hypotaurine to taurine: Hypotaurine as an antioxidant. Prog. Clin. Biol. Res. 179:71–82.

    Google Scholar 

  9. Aruoma, O. I., Halliwell, B., Hoey, B. M., and Butler, J. 1988. The antioxidant action of taurine, hypotaurine and their metabolic precursor. Biochem. J. 256:251–255.

    Google Scholar 

  10. Green, T. R., Fellman, J. H., Eicher, A. L., and Pratt, K. L.1991. Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim. Biophys. Acta 1073:91–97.

    Google Scholar 

  11. Tadolini, B., Pintus, G., Pinna, G. G., Bennardini, F., and Franconi, F. 1995. Effects of taurine and hypotaurine on lipid peroxidation. Biochem. Biophys. Res. Commun. 213:820–826.

    Google Scholar 

  12. Pecci, L., Montefoschi, G., Fontana, M., Duprè, S., Costa, M., and Cavallini, D. 2000. Hypotaurine and superoxide dismutase: Protection of enzyme against inactivation by hydrogen peroxide and peroxidation to taurine. Adv. Exp. Med. Biol. 483:163–168.

    Google Scholar 

  13. Kochakian, C. D. 1976. Hypotaurine: Regulation of production in seminal vesicles and prostate of guinea-pig by testosterone. Nature 241:202–203.

    Google Scholar 

  14. Meizel, S., Lui, C. W., Working, P. K., and Mrsny, R. J. 1980. Taurine and hypotaurine: Their effects on motility, capacitation, and the acrosome reaction of hamster sperm in vitro and their presence in sperm and reproductive tract fluid of several mammals. Dev. Growth Differ. 22:483–494.

    Google Scholar 

  15. Holmes, R. P., Goodman, H. O., Shihabi, Z. K., and Jarow, J. P. 1992. The taurine and hypotaurine content of human semen. J. Androl. 13:289–292.

    Google Scholar 

  16. Huie, R. E. and Padmaja, S. 1993. The reaction of NO with superoxide. Free Rad. Res. Commun. 18:195–199.

    Google Scholar 

  17. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  18. Inoue, S. and Kawanishi, S. 1995. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 371:86–88.

    Google Scholar 

  19. Kirsch, M. and de Groot, H. 2000. Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions: Evidence that ascorbate acts by re-reducing substrate radicals produced by peroxynitrite. J. Biol. Chem. 275:16702–16708.

    Google Scholar 

  20. Trujillo, M. and R. Radi, R. 2002. Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: New insights into the reaction of peroxynitrite with thiols. Arch. Biochem. Biophys. 397:91–98.

    Google Scholar 

  21. Beckman, J. S. 1996. Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9:836–844.

    Google Scholar 

  22. Eiserich, J. P., Hristova, M., Cross, C. E., Daniel Jones, A., Freeman, B. A., Halliwell, B., and van der Vliet, A. 1998. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397.

    Google Scholar 

  23. Eiserich, J. P., Patel, R. P., and O'Donnel, V. B. 1998. Pathophysiology of nitric oxide and related species: Free radical reactions and modification of biomolecules. Mol. Aspects Med. 19:221–357.

    Google Scholar 

  24. Pecci, L., Montefoschi, G., Antonucci, A., Costa, M., Fontana, M., and Cavallini, D. 2001. Formation of nitrotyrosine by methylene blue photosensitized oxidation of tyrosine in the presence of nitrite. Biochem. Biophys. Res. Commun. 289:305–309.

    Google Scholar 

  25. Moreno, J. J. and Pryor, W. A. 1992. Inactivation of α1-antiproteinase inhibitor by peroxynitrite. Chem. Res. Toxicol. 5:425–431.

    Google Scholar 

  26. Graham, A., Hogg, N., Kalyanaraman, B., O'Leary, V., Darley-Usmar, V., and Moncada, S. 1993. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 330:181–185.

    Google Scholar 

  27. Gow, A., Duran, D., Thom, S. R., and Ischiropoulos, H. 1996. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys. 333:42–48.

    Google Scholar 

  28. Radi, R., De Nicola, A., and Freeman, B. A. 1999. Peroxynitrite reactions with carbon dioxide-bicarbonate. Methods Enzymol. 301:352–367.

    Google Scholar 

  29. Meli, R., Nauser, T., Latal, P., and Koppenol, W. H. 2002. Reaction of peroxynitrite with carbon dioxide: Intermediates and determination of the yield of CO3 •− and NO2 . J. Biol. Inorg. chem. 7:31–36.

    Google Scholar 

  30. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620–1624.

    Google Scholar 

  31. Beckman, J. S., Ye, Y. Z., Anderson, P., Chen, J., Accavetti, M. A., Tarpey, M. M., and White, C. R. 1994. Extensive nitration of protein tyrosine in human atherosclerosis detected by immunohistochemistry. Biol. Chem. 375:81–88.

    Google Scholar 

  32. Haddad, I. Y., Pataki, G., Hu, P., Galliani, C., Beckman, J. S., and Matalon, S. 1994. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Inv. 94:2407–2413.

    Google Scholar 

  33. Halliwell, B., Evans, P., and Whiteman, H. 1999. Assessment of peroxynitrite scavengers in vitro. Methods Enzymol. 301:333–342.

    Google Scholar 

  34. Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P. 1994. Oxidative chemistry of peroxynitrite. Methods Enzymol. 233:229–240.

    Google Scholar 

  35. Hatch, F. T. and Lees, R. S. 1968. Practical method for plasma lipoprotein analysis. Adv. Lipid Res. 6:2–68.

    Google Scholar 

  36. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J.1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  37. Mehta, T. R. and Dawson, R. Jr., 2001. Taurine is a weak scavenger of peroxynitrite and does not attenuate sodium nitropusside toxicity to cells in culture. Amino Acids 20:419–433.

    Google Scholar 

  38. Fontana, M., Pinnen, F., Lucente, G., and Pecci, L. 2002. Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudopeptides. Cell. Mol. Life Sci. 59:546–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Fontana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, M., Pecci, L., Duprè, S. et al. Antioxidant Properties of Sulfinates: Protective Effect of Hypotaurine on Peroxynitrite-Dependent Damage. Neurochem Res 29, 111–116 (2004). https://doi.org/10.1023/B:NERE.0000010439.99991.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010439.99991.cf

Navigation