Skip to main content
Log in

The Evolving Role of Stereotactic Radiosurgery and Stereotactic Radiation Therapy for Patients with Spine Tumors

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Traditional management strategies for patients with spinal tumors have undergone considerable changes during the last 15years. Significant improvements in digital imaging, computer processing, and treatment planning have provided the basis for the application of stereotactic techniques, now the standard of care for intracranial pathology, to spinal pathology. In addition, certain of these improvements have also allowed us to progress from frame-based to frameless systems which now act to accurately assure the delivery of high doses of radiation to a precisely defined target volume while sparing injury to adjacent normal tissues.

In this article we will describe the evolution from yesterday’s standards for radiation therapy to the current state of the art for the treatment of patients with spinal tumors.

This presentation will include a discussion of radiation dosing and toxicity, the overall process of extracranial radiation delivery, and the current state of the art regarding Cyberknife, Novalis, and tomotherapy. Additional discussion relating current research protocols and future directions for the management of benign tumors of the spine will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faul CM, Flickinger JC: The use of radiation in the management of spinal metastases. J Neurooncol 23: 149–161, 1995

    CAS  PubMed  Google Scholar 

  2. Tong D, Gillick L, Hendrickson FR: The palliation of symptomatic osseous metastases. Final results of the study of the Radiation Therapy Oncology Group. Cancer 50: 893–899, 1982

    CAS  PubMed  Google Scholar 

  3. Bone Pain Trial Working Party: 8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain: randomized comparison with a multifraction schedule over 12 months of patient follow-up. On behalf of the bone pain trial working party. Radiother Oncol 52: 111–121, 1999

    Google Scholar 

  4. Steenland ES, Leer JW, van Houwelingen H, Post WJ, van den Hout WB, Kievit J, de Haes H, Martijn H, Oei B, Vonk E, van der Steen-Banasik E, Wiggenraad RGJ, Hoogenhout J, Warlam-Rodenhuis CC, van Tienhoven G, Wanders R, Pomp J, van Reijn T, van Mierlo I, Rutten E: The effect of a single fraction to multiple fractions on painful bone metastases: a global analysis of the Dutch Bone Metastasis Study. Radiother Oncol 52: 101–109, 1999

    CAS  PubMed  Google Scholar 

  5. Van Der Kogel AJ: Retreatment tolerance of the spinal cord. Int J Radiat Oncol Biol Phys 26: 715, 1993

    CAS  PubMed  Google Scholar 

  6. Wara WM, Phillips TL, Sheline GE, Schwade JG: Radiation tolerance of the spinal cord. Cancer 35: 1558–1562, 1975

    CAS  PubMed  Google Scholar 

  7. Schultheiss T: Spinal cord radiation ‘tolerance’; doctrine versus data. Int J Radiat Oncol Biol Phys 19: 219–221, 1990

    CAS  PubMed  Google Scholar 

  8. Combes PF, Daly N: Late progressive radiation myelopathies;a study of 27 cases. J Radiol Electrol Med Nucl 57: 815–825, 1975

    Google Scholar 

  9. Leibel A, Sheline E: Tolerance of the brain and spinal cord to conventional irradiation. In: Gutin P, Leibel S, Sheline G (eds) Radiation Injury to the Nervous System. Chapter 13. Raven Press, New York 1991, pp 239–256

    Google Scholar 

  10. Lamy C, Mas JL: Post radiation lower motor neuron syndrome presenting as momomyelix amyotropgy. J Neurol Neurosurg Psychiatry 54: 648–649, 1991

    CAS  PubMed  Google Scholar 

  11. Lambert PW, Davis RL: Delayed effects of radiation on the human nervous system. Neurology 14: 912–917, 1964

    PubMed  Google Scholar 

  12. Ang KK, Price RE, Stephens LC et al.: The tolerance of primate spinal cord to reirradiation. Int J Radiat Oncol Biol Phys 25: 459–464, 1993

    CAS  PubMed  Google Scholar 

  13. Ryu S, Gorty S, Kazee Am et al.: ‘Full dose’ reirradiation of the human cervical spinal cord. Am J Clin Oncol 23: 29–31, 2002

    Google Scholar 

  14. Takahashi S: Conformation radiotherapy-rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol 242: 1–42, 1965

    Google Scholar 

  15. Purdy JA: Intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 35: 845–846, 1995

    Google Scholar 

  16. Pirzkall A, Carol M, Lohr F, Hoss A, Wannenmacher M, Debus J: Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys 48: 1371–1380, 2000

    CAS  PubMed  Google Scholar 

  17. Woo S, Butler EB, Grant WH III: Initial clinical experience of Peacock intensity modulation of 3-D conformal radiotherapy. Abstract Proceedings of the American Radium Society 78th Annual Meeting 1995, p 36

  18. DeNeve W, Van den Heuvel F, DeBeukeleer M, Coghe M, Thon L, DeRoover P, VanLancker M, Storme G: Routine clinical on-line portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radiother Oncol 24: 45–54, 1992

    CAS  PubMed  Google Scholar 

  19. Hamilton AJ, Lulu BA: A prototype device for linear-accelerator based extracranial radiosurgery. Acta Neurochir (Wien)63: 40–43, 1995

    CAS  Google Scholar 

  20. Lax I, Blomgren H, Naslund I, Svanstrom R: Stereotactic radiotherapy of malignancies in the abdomen. Acta Oncol 33: 677–683, 1994

    CAS  PubMed  Google Scholar 

  21. Lohr F, Debus J, Frank C, Herfarth K, Pastyr O, Rhein B, Bahner ML, Schlegel W, Wannenmacher M: Noninvasive patient fixation for extracranial stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 45: 521–527, 1999

    CAS  PubMed  Google Scholar 

  22. Chang SD, Main W, Martin DP, Heilbrun MP: An analysis of the accuracy of the Cyberknife System: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52(1): 140–147, 2003

    PubMed  Google Scholar 

  23. Murphy MJ, Cox RS: The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys 23: 2043–2049, 1996

    CAS  PubMed  Google Scholar 

  24. Yin FF, Ryu S, Ajlouni M, Zhu J, Yan H, Guan H, Faber K, Rock J, Abdulhak M, Rogers L, Rosenblum M, Kim JH: A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys 29: 2815–2822, 2002

    PubMed  Google Scholar 

  25. Flickinger JC, Konziolka D, Lunsford LD: Radiobiolog-ical analysis of tissue responses following radiosurgery. Technol Cancer Res Treatment 2: 87–92, 2003

    Google Scholar 

  26. Carol M, Grant WH III, Pavord D, Eddy P, Targovnik HS, Butler B, Woo S, Figura J, Onofrey J, Grossman R, Selkar R: Initial clinical experience with the Peacock intensity modulation of as 3D conformal radiation therapy system. Stereotact Funct Neurosurg 66: 30–34, 1996

    CAS  PubMed  Google Scholar 

  27. Saw CB, Yakoob R, Enka CA, Lau TP, Ayyangur KM: Immobilization devices for intensity-modulated radiation therapy (IMRT). Med Dosim 26: 71–77, 2001

    CAS  PubMed  Google Scholar 

  28. Carol MP, Woo SY, Butler EB: Intensity-modulated radiation therapy treatment. In: Tobias TP (ed) Current Radiation Oncology. Vol. 3. 2nd ed., Arnold, London, 1997, pp 376–395

    Google Scholar 

  29. Kuo JK, Cabebe E, Al-Ghazi M, Yakoob R, Ramsinghani NS, Sanford R. Intensity-modulated radiation therapy for the spine at the University of California. Med Dosim 27: 137–145, 2002

    PubMed  Google Scholar 

  30. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL: The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69: 124–128, 1997

    PubMed  Google Scholar 

  31. Ryu SI, Chang SD, Kim DH et al.: Image-guided hypo-fractionated radiosurgery to spinal lesions. Neurosurgery 49: 838–846, 2001

    CAS  PubMed  Google Scholar 

  32. Hamilton AJ, Lulu BA, Fosmire H, Gossett: LINAC-based spinal stereotactic Radiosurgery. Stereotact Funct Neurosurg 66: 1–9, 1996

    CAS  Google Scholar 

  33. Chang SD, Meisel JA, Hancock SL et al.: Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery 43: 28–35, 1998

    CAS  PubMed  Google Scholar 

  34. Gertzen PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S: Cyberknife frameless single-fraction stereotactic radiosurgery for benign tumors of the spine. Neurosurg Focus 14: 1–5, 2003

    Google Scholar 

  35. Cosgrove VP, Jahn U, Pfaender S, Bauer S, Budach V, Wurm R: Commissioning of a micro-multileaf colliminator and planning system for stereotactic radiosurgery. Radiother Oncol 50: 325–336, 1999

    CAS  PubMed  Google Scholar 

  36. Yin FF, Zhu J, Yan H, Gaun H, Hammoud R, Ryu S, Kim JH: Dosimetric characteristics of Novalis Shaped Beam surgery unit. Med Phys 29: 1729–1738, 2002

    PubMed  Google Scholar 

  37. Rock JP, Kole M, Yin FF, Ryu S, Gutierrez J, Rosenblum M. Radiosurgical treatment for Ewing’s sarcoma of the lumbar spine: case report. Spine 27: E471–E475, 2002

    PubMed  Google Scholar 

  38. Tishler RB, Loeffer JS, Lunsford LD, Duma C, Alexander E III, Kooy HM, Flickinger JC: Tolerance of cranial nervous of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 27: 215–221, 1993

    CAS  PubMed  Google Scholar 

  39. Chiras J, Depriester C, Weill A, Sola-Martinez MT, Deramond H: Percutaneous vertebral surgery. Technics and indications. J Neuroradiol 24: 45–59, 1997

    CAS  PubMed  Google Scholar 

  40. Hodler J, Peck D, Gilula LA: Midterm outcome after vertebroplasty: predictive value of technical and patient-related factors. Radiology 227: 662–668

  41. Baba Y, Ohkubo K, Hamada K, Hokotate H, Nakajo M: Percutaneous vertebroplasty for osteolytic metastasis: a case report. Nippon Acta Radiologica 57: 880–882, 1997

    CAS  PubMed  Google Scholar 

  42. Cardon T, Hachulla E, Flipo RM, Chastenet P, Rose C, Deprez X, Duquesnoy B, Delcambre B, Devulder B: Percutaneous vertebroplasty with acrylic cement in the treatment of a Langerhans cell vertebral histocytosis. Clin Rheumatol 13: 518–521, 1994

    CAS  PubMed  Google Scholar 

  43. Frassica DA: General principles of external beam radiation therapy for skeletal metastases. Clin Orthop Related Res 415: S158–S164, 2003

    Google Scholar 

  44. Wenger M: Vertebroplasty for metastasis. Med Oncol 20: 203–209, 2003

    PubMed  Google Scholar 

  45. Schachar NS: An update on the nonoperative treatment of patients with metastastic bone disease. Clin Orthop Related Res 382: 75–81, 2001

    Google Scholar 

  46. Basic-Kes V, Basic-Jukie N, Kes P, Demarin V, Labar B: Neurologic manifestations of osteolytic bone changes in multiple myeloma: diagnosis and treatment. Acta Medica Croatica 56: 103–107, 2002

    PubMed  Google Scholar 

  47. Fourney DR, Schomer DF, Nader R, Chlan-Fourney J, Suki D, Ahrar K, Rhines LD, Gokaslan ZL: Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 98: 21–30, 2003

    Google Scholar 

  48. Martin JB, Gailloud P, Dietrich PY, Luciani ME, Soman T, Sappino PA, Rufenach DA: Direct transoral approach to C2 for percutaneous vertebroplasty. Cardiovasc Intervent Radiol 25: 517–519, 2002

    PubMed  Google Scholar 

  49. Barath K, Martin JB, Fasel HJ, Tokunaga K, Szikora I, Martos J, Nyary I, Rufenacht AD: Percutaneous vertebroplasty: methods, indications, results. Orvosi Hetilap 143: 2469–2477, 2002

    PubMed  Google Scholar 

  50. Jensen ME, Kallmes DE: Percutaneous vertebroplasty in the treatment of malignant spine disease. Cancer 8: 194–206, 2002

    Google Scholar 

  51. Alvarez L, Perez-Higueras A, Quinones D, Calvo E, Rossi RE: Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Europ Spine J 12: 356–360, 2003

    CAS  Google Scholar 

  52. Zoarski GH, Stallmeyer MJ, Obuchowski A: Percutaneous vertebroplasty: A to Z. Tech Vasc Intervent Radiol 5: 223–238, 2002

    Google Scholar 

  53. Do HM: Magnetic resonance imaging in the evaluation of patients for percutaneous vertebroplasty. Top Magn Reson Imaging 11: 235–244, 2000

    CAS  PubMed  Google Scholar 

  54. Insalaco P, Thomas PH, Saint-Eve ME, Tamisier JN, Toussaint F, Pourel J. Aggressive vertebral hemangiomas: two new observations and review of the literature. Rheumatologies 51: 22–25, 1999

    Google Scholar 

  55. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR: The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128793–128800, 1998

  56. Shih TT, Huang KM, Li YW: Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging 9: 635–642, 1999

    CAS  PubMed  Google Scholar 

  57. Barr JD, Barr MS, Lemley TJ, McCann RM: Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 25: 923–928, 2000

    CAS  PubMed  Google Scholar 

  58. Takacs I, Hamilton AJ: Extracranial stereotactic radiosurgery. Neurosurg Clin N Am 10: 257–270, 1999

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rock, J.P., Ryu, S., Yin, FF. et al. The Evolving Role of Stereotactic Radiosurgery and Stereotactic Radiation Therapy for Patients with Spine Tumors. J Neurooncol 69, 319–334 (2004). https://doi.org/10.1023/B:NEON.0000041890.01837.53

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEON.0000041890.01837.53

Navigation