Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High and Low Grade Oligodendrogliomas (ODG): Correlation of Amino-Acid and Glucose Uptakes Using PET and Histological Classifications

  • 95 Accesses

  • 29 Citations

Abstract

Classification and treatment strategy of Oligodendrogliomas (ODG) remain controversial. Imaging relies essentially on contrast enhancement using CT or MRI. The aim of our study was to use positron emission tomography (PET) using [18F]-flurodeoxyglucose (FDG) and [11C]-L-methyl-methionine (MET) to evaluate metabolic characteristics of (ODG). We studied 19 patients with proven ODG, comparing standardised uptake values (SUV) and maximal tumor/contralateral normal tissues ratios (T/N). Imaging findings were compared with WHO, Smith and Daumas—Duport classifications. Uptake of FDG was decreased only in 8 patients, independently of grading, while MET uptake was always increased. MET uptake was significantly higher for high grade tumors grouped according to Smith or Daumas—Duport classifications, while no significant difference in MET uptake was found when using WHO classification. A different correlation was found between FDG and MET uptakes in normal tissues and high grade tumors. A trend for improved progression free survival was found for tumors that lacked contrast enhancement on MRI or those showing low FDG or MET uptake.

In conclusion, MET appeared more sensitive than FDG to detect proliferation in ODG. The preferential protein metabolism, already noticeable for low-grade tumor, correlated with glucose metabolism and helped to separate, in vivo, high and low grade tumors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Macdonald DR: Low-grade gliomas, mixed gliomas, and oligodendrogliomas. Semin Oncol 21(2): 236–248, 1994

  2. 2.

    Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP: Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54(16): 4299–4303, 1994

  3. 3.

    Cairncross G, Macdonald D, Ludwin S, Lee D, Cascino T, Buckner J, Fulton D, Dropcho E, Stewart D, Schold C Jr: Chemotherapy for anaplastic oligodendroglioma. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 12(10): 2013–2021, 1994

  4. 4.

    Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP: Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of cases. J Neurooncol 34(1): 37–59, 1997

  5. 5.

    Markwalder TM, Huber P, Markwalder RV, Seiler RW: Primary intraventricular oligodendrogliomas. Surg Neurol 11(1): 25–28, 1979

  6. 6.

    Krouwer HG, van Duinen SG, Kamphorst W, van der Valk P, Algra A: Oligoastrocytomas: a clinicopathological study of 52 cases. J Neurooncol 33(3): 223–238, 1997

  7. 7.

    Ringertz J: Grading of gliomas. Acta Pathol Microbiol Scand 27: 51–64, 1950

  8. 8.

    Smith MT, Ludwig CL, Godfrey AD, Armbrustmacher VW: Grading of oligodendrogliomas. Cancer 52(11): 2107–2114, 1983

  9. 9.

    Shaw EG, Scheithauer BW, O'Fallon JR, Tazelaar HD, Davis DH: Oligodendrogliomas: the Mayo Clinic experience. J Neurosurg 76(3): 428–434, 1992

  10. 10.

    Reifenberger G, Kros JM, Burger PC, Louis DU, Collins VP: Anaplastic oligodendroglioma. In: Kleiheus P, Cavenee WR (eds) Pathology and Genetics. Tumors of the Nervous System. IARC Press, 2000, pp 62–64

  11. 11.

    Daumas-Duport C, Tucker ML, Kolles H, Cervera P, Beuvon F, Varlet P, Udo N, Koziak M, Chodkiewicz JP: Oligodendrogliomas. Part II: A new grading system based on morphological and imaging criteria. J Neurooncol 34(1): 61–78, 1997

  12. 12.

    Warburg O: On the origin of cancer cells. Science 123(24): 309–314, 1956

  13. 13.

    Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP: Glucose utilization of cerebral gliomas measured by F18-fluorode-oxyglucose and positron emission tomography. Neurology 32: 1323–1329, 1982

  14. 14.

    Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM: Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1(4): 47–52, 1995

  15. 15.

    Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K: Clinical positron emission tomography for brain tumors: Comparison of fludeoxyglucose F 18 and L-Methyl-C-11-methionine. Am J Neuroradiol 17(2): 345–353, 1996

  16. 16.

    Herholz K, Pietrzyk U, Voges J, Schroder R, Halber M, Treuer H, Sturm V, Heiss WD: Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 79(6): 853–885, 1993

  17. 17.

    Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM: Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816–822, 1985

  18. 18.

    Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M: Positron emission tomography in patients with glioma: a predictor of prognosis. Cancer 62: 1074–1078, 1988

  19. 19.

    Schifter T, Hoffman JM, Hanson MW, Boyko OB, Beam C, Paine S, Schold SC, Burger PC, Coleman RE: Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomog 17(4): 509–516, 1993

  20. 20.

    De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, Hildebrand J, Brotchi J, Goldman S: Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39(3): 470–477, 1996

  21. 21.

    Lilja A, Bergstrom K, Hartvig P, Spannare B, Halldin C, Lundqvist H, Langstrom B: Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. Am J Neuroradiol 6(4): 505–514, 1985

  22. 22.

    Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T: Cerebral Glioma — Evaluation with Methionine PET. Radiology 186(1): 45–53, 1993

  23. 23.

    Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, Courtheoux P, Houtteville JP: The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40(2): 276–288, 1997

  24. 24.

    Derlon JM, Chapon F, Noel MH, Khouri S, Benali K, Petit-Taboue MC, Houtteville JP, Chajari MH, Bouvard G: Non-invasive grading of oligodendrogliomas: correlations between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7): 778–787, 2000

  25. 25.

    Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A: [11C]L-methionine uptake in gliomas. Neurosurgery 25(5): 720–728, 1989

  26. 26.

    Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, Luxen A, Reznik M: Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39(5): 778–785, 1998

  27. 27.

    Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, Bolander H, Bergstrom M, Smits A: Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92: 1541–1549, 2001

  28. 28.

    Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8(8476): 307–310, 1986

  29. 29.

    Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Lottgen J, Thiel A, Wienhard K, Heiss WD: 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5): 1316–1322, 1998

  30. 30.

    Mineura K, Shioya H, Kowada M, Ogawa T, Hatazawa J, Uemura K: Blood flow and metabolism of oligodendrogliomas: a positron emission tomography study with kinetic analysis of 18F-fluorodeoxyglucose. J Neurooncol 43(1): 49–57, 1999

  31. 31.

    Leaver HA, Whittle IR, Wharton SB, Ironside JW: Apoptosis in human primary brain tumours. Br J Neurosurg 12(6): 539–546, 1998

  32. 32.

    Dumontet C, Roch AM, Quash G: Methionine dependence of tumor cells: programmed cell survival? Oncol Res 8(12): 469–471, 1996

  33. 33.

    Quash G, Fournet G, Raffin C, Chantepie J, Michal Y, Gore J, Reichert U: A thioester analogue of an amino acetylenic aldehyde is a suicide inhibitor of aldehyde dehydrogenase and an inducer of apoptosis in mouse lymphoid cells overexpressing the bcl2 gene. Adv Exp Med Biol 463: 97–106, 1999

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giammarile, F., Cinotti, L., Jouvet, A. et al. High and Low Grade Oligodendrogliomas (ODG): Correlation of Amino-Acid and Glucose Uptakes Using PET and Histological Classifications. J Neurooncol 68, 263–274 (2004). https://doi.org/10.1023/B:NEON.0000033384.43417.82

Download citation

  • C11-methionine
  • F18-fluorodeoxyglucose
  • histopathological classification
  • oligodendroglioma
  • positron emission tomography