Skip to main content
Log in

Evolution of a Gene Therapy Clinical Trial

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Developing and conducting gene therapy clinical trials poses unique challenges which must be addressed to satisfy regulatory requirements and, most importantly, to protect human subjects. Experimental products used for gene transfer studies, such as viral vectors, are often complex and cannot be sterilized or completely characterized to the extent of a typical pharmaceutical. Thus, quality and characterization must be built into the production process. Extensive preclinical studies must be performed to determine the feasibility of the approach, the safety of the product, and the appropriate dose range to evaluate in humans. Once a clinical trial is initiated, subjects must be followed carefully for short- and long-term toxicity especially since preclinical studies may not adequately predict the toxicity profile of these novel, complicated products. Results of early phase studies in gene therapy have often sent the investigators back to the laboratory to improve the delivery vector or identify a more potent or less toxic gene. This circular developmental process is expected for the early stages of a new technology such as gene therapy. Although these hurdles appear extensive, they can be overcome, as evidenced by the initiation of more than 500 clinical gene therapy trials in the United States to date, and are imperative for the maintenance of high-quality studies and public trust. This article describes the step-by-step process for developing a gene therapy trial incorporating specific examples relevant to neuro-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niidome T, Huang L: Gene therapy progress and prospects: nonviral vectors. Gene Ther 9: 1647-1652, 2002

    Google Scholar 

  2. Shi N, Pardridge WM: Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 97: 7567-7572, 2000

    Google Scholar 

  3. Visted T, Bjerkvig R, Enger PO: Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neuro-Oncology 3: 201-210, 2001

    Google Scholar 

  4. Okada H, Pollack IF, Lieberman F, Lunsford LD, Kondziolka D, Schiff D, Attanucci J, Edington H, Chambers W, Kalinski P, Kinzler D, Whiteside T, Elder E, Potter D: Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum Gene Ther 12: 575-595, 2001

    Google Scholar 

  5. Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mokhtari K, Diquet B, Salzmann JL, Philippon J: A phase I/II study of herpes simplex virus type 1 thymidine kinase 'suicide' gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther 9: 2595-2604, 1998

    Google Scholar 

  6. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, Sorensen AG, Barbier N: A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 10: 2325-2335, 1999

    Google Scholar 

  7. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, Long Z, Chiang Y, McGarrity GJ, Muul LM, Katz D, Blaese RM, Oldfield EH: Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3: 1354-1361, 1997

    Google Scholar 

  8. Rainov NG: Aphase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11: 2389-2401, 2000

    Google Scholar 

  9. Harsh GR, Deisboeck TS, Louis DN, Hilton J, Colvin M, Silver JS, Qureshi NH, Kracher J, Finkelstein D, Chiocca EA, Hochberg FH: Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg 92: 804-811, 2000

    Google Scholar 

  10. Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, Hamilton WJ, Rojas-Martinez A, Chen SH, Woo SL, Grossman RG: Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 1: 195-203, 2000

    Google Scholar 

  11. Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme _TL, Wheeler TM, Thompson TC, Scardino PT: In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 10: 1239-1249, 1999

    Google Scholar 

  12. Morris JC, Ramsey WJ, Wildner O, Muslow HA, Aguilar-Cordova E, Blaese RM: A phase I study of intralesional administration of an adenovirus vector expressing the HSV-1 thymidine kinase gene (AdV.RSV-TK) in combination with escalating doses of ganciclovir in patients with cutaneous metastatic malignant melanoma. Hum Gene Ther 11: 487-503, 2000

    Google Scholar 

  13. Hasenburg A, Tong XW, Fischer DC, Rojas-Martinez A, Nyberg-Hoffman C, Kaplan AL, Kaufman RH, Ramzy I, Aguilar-Cordova E, Kieback DG: Adenovirus-mediated thymidine kinase gene therapy in combination with topotecan for patients with recurrent ovarian cancer: 2.5-year follow-up. Gynecol Oncol 83: 549-554, 2001

    Google Scholar 

  14. Lang FF, Yung WK, Sawaya R, Tofilon PJ: Adenovirusmediated p53 gene therapy for human gliomas. Neurosurgery 45: 1093-1104, 1999

    Google Scholar 

  15. Eck SL, Alavi JB, Judy K, Phillips P, Alavi A, Hackney D, Cross P, Hughes J, Gao G, Wilson JM, Propert K: Treatment of recurrent or progressive malignant glioma with a recombinant adenovirus expressing human interferon-beta (H5.010CMVhIFN-beta): a phase I trial. Hum Gene Ther 12: 97-113, 2001

    Google Scholar 

  16. Liu Y, Ehtesham M, Samoto K, Wheeler CJ, Thompson RC, Villarreal LP, Black KL, Yu JS: In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 9: 9-15, 2002

    Google Scholar 

  17. Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G, Dranoff G, Breakefield XO, Yu JS: Vaccination for experimental gliomas using GM-CSFtransduced glioma cells. Cancer Gene Ther 4: 345-352, 1997

    Google Scholar 

  18. Okada H, Pollack IF, Lotze MT, Lunsford </del> LD, Kondziolka D, Lieberman F, Schiff D, Attanucci J, Edington H, Chambers W, Robbins P, Baar J, Kinzler D, Whiteside T, Elder E: Gene therapy of malignant gliomas: a phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response: Hum Gene Ther 11: 637-653, 2000

    Google Scholar 

  19. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Terrier-Lacombe MJ, Bressac De-Paillerets B, Barrois M, Feunteun J, Kirn DH, Vassal G: Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res. 62: 764-772, 2002

    Google Scholar 

  20. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B geneattenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3: 639-645, 1997

    Google Scholar 

  21. Lam PY, Breakefield XO: Potential of gene therapy for brain tumors. Hum Mol Genet 10: 777-787, 2001

    Google Scholar 

  22. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL: Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7: 867-874, 2000

    Google Scholar 

  23. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M: Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7: 859-866, 2000

    Google Scholar 

  24. Moriuchi S, Krisky DM, Marconi PC, Tamura M, Shimizu K, Yoshimine T, Cohen JB, Glorioso JC: HSV vector cytotoxicity is inversely correlated with effective TK/GCVsuicide gene therapy of rat gliosarcoma. Gene Ther 7: 1483-1490, 2000

    Google Scholar 

  25. Kramm CM, Chase M, Herrlinger U, Jacobs A, Pechan PA, Rainov NG, Sena-Esteves M, Aghi M, Barnett FH, Chiocca EA, Breakefield XO: Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 8: 2057-2068, 1997

    Google Scholar 

  26. Niranjan A, Moriuchi S, Lunsford LD, Kondziolka D, Flickinger JC, Fellows W, Rajendiran S, Tamura M, Cohen JB, Glorioso JC: Effective treatment of experimental glioblastoma by HSV vector-mediated TNF alpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration.Mol Ther 2: 114-120, 2000

    Google Scholar 

  27. Burton EA, Bai Q, Goins WF, Glorioso JC: Replicationdefective genomic herpes simplex vectors: design and production. Curr Opin Biotechnol. 13: 424-428, 2002

    Google Scholar 

  28. Crystal RG, McElvaney NG, Rosenfeld MA, Chu CS, Mastrangeli A, Hay JG, Brody SL, Jaffe HA, Eissa NT, Danel C: Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8: 42-51, 1994

    Google Scholar 

  29. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, Furth EE, Propert KJ, Robinson MB, Magosin S, Simoes H, Speicher L, Hughes J, Tazelaar J, Wivel NA, Wilson JM, Batshaw ML: A pilot study of in vivo liverdirected gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 13: 163-175, 2002

    Google Scholar 

  30. Rojas-Martinez A, Wyde PR, Montgomery CA, Chen SH, Woo SL, Aguilar-Cordova E: Distribution, persistency, toxicity, and lack of replication of an E1A-deficient adenoviral vector after intracardiac delivery in the cotton rat. Cancer Gene Ther 5: 365-370, 1998

    Google Scholar 

  31. Shine HD, Wyde PR, Aguilar-Cordova E, Chen SH, Woo SL, Grossman RG, Goodman JC: Neurotoxicity of intracerebral injection of a replication-defective adenoviral vector in a semipermissive species (cotton rat). Gene Ther 4: 275-279, 1997

    Google Scholar 

  32. Goodman JC, Trask TW, Chen SH, Woo SL, Grossman RG, Carey KD, Hubbard GB, Carrier DA, Rajagopalan S, Aguilar-Cordova E, Shine HD: Adenoviral-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic, and molecular studies. Hum Gene Ther 7: 1241-1250, 1996

    Google Scholar 

  33. Varghese S, Newsome JT, Rabkin SD, McGeagh K, Mahoney D, Nielsen P, Todo T, Martuza RL: Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates. Hum Gene Ther 12: 999-1010, 2001

    Google Scholar 

  34. Sheldon WG, Ross MA: A generalized herpes virus infection in owl monkeys. REP NO 670. Rep US Army Med Res Lab Mar 21: 1-22, 1966

    Google Scholar 

  35. Piantadosi S: Clinical Trials: A Methodologic Perspective. Wiley-Interscience Publication, New York, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, L.K., Aguilar-Cordova, E. Evolution of a Gene Therapy Clinical Trial. J Neurooncol 65, 307–315 (2003). https://doi.org/10.1023/B:NEON.0000003659.04633.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEON.0000003659.04633.6e

Navigation