Skip to main content
Log in

Oncolytic Viruses: Clinical Applications as Vectors for the Treatment of Malignant Gliomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gene therapy using viral vectors for the treatment of primary brain tumors has proven to be a promising novel treatment modality. Much effort in the past has been placed in utilizing replication-defective viruses to this end but they have shown many disadvantages. Much recent attention has been focused on the potential of replication-competent viruses to discriminatingly target, replicate within, and destroy tumor cells via oncolysis, leaving adjacent post-mitotic neurons unharmed. The engineered tumor-selective herpes simplex-1 virus (HSV-1) mutants G207 and HSV1716 have completed Phase I investigations in the treatment of recurrent high-grade glioma. The results of these clinical trials are reviewed here. This review also aims to examine the manipulation and development of other viruses for the treatment of malignant glioma, including Newcastle disease virus, reovirus, poliovirus, vaccinia virus, and adenoviruses, in particular the adenovirus mutant ONYX-015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rainov NG: A Phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene 221 therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Human Gene Ther 11: 2389-2401, 2000

    Google Scholar 

  2. De Pace NG: Sulla scomparsa di un enorme cancro vegetante del callo dell'utero senza cura chirurgica. Ginecologia 9: 82-88, 1912

    Google Scholar 

  3. Smith RR, Huebner RJ, Rowe WP, Schatten WE, Thomas LB: Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 6(9): 1211-1218, 1956

    Google Scholar 

  4. Bluming AZ and Ziegler JL: Regression of Burkitt's lymphoma in association with measles infection. Lancet 105-107, 1971

  5. Taqi AM: Regression of Hodgkin's disease after measles. Lancet 1(8229): 1112, 1981

    Google Scholar 

  6. Pasquinucci G: Possible effect of measles on leukaemia. Lancet 1(7690): 136, 1971

    Google Scholar 

  7. Gross S: Measles and leukiemia. Lancet 1(7695): 397-398, 1971

    Google Scholar 

  8. Asada T: Treatment of human cancer with mumps virus. Cancer 34: 1907-1928, 1974

    Google Scholar 

  9. Okuno Y, Asada T, Yamanishi K, Otsuka T, Takahashi M, Tanioka T, Aoyama H, Fukui O, Matsumoto K, Uemura F, Wada A: Studies on the use of mumps virus for treatment of human cancer. Biken J 21(2): 37-49, 1978

    Google Scholar 

  10. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM: Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854-856, 1991

    Google Scholar 

  11. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL: Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10): 867-874, 2000

    Google Scholar 

  12. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M: Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7: 859-866, 2000

    Google Scholar 

  13. Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R, Robertson AG, Park O, Gulley ML, Heise C, Von Hoff DD, Kaye SB, Eckhardt SG: A Phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 6: 798-806, 2000

    Google Scholar 

  14. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, Landers S, Maples P, Romel L, Randlev B, Reid T, Kaye S, Kirn D: Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 60(22): 6359-6366, 2000

    Google Scholar 

  15. Chou J, Kern ER, Whitley RJ, Roizman B: Mapping of herpes simplex virus-1 neurovirulence to gamma 34.5, a gene nonessential for growth in culture. Science 250(4985): 1262-1266, 1990

    Google Scholar 

  16. Goldstein DJ and Weller SK: Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62: 196-205, 1988

    Google Scholar 

  17. He B, Gross M and Roizman B: The ?134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. PNAS 94: 843-848, 1997

    Google Scholar 

  18. Chou J, Roizman B: The ?134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells form triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cell. PNAS 89: 3266-3270, 1992

    Google Scholar 

  19. Farassati F, Yang A Lee PWK: Oncogenes in Ras signaling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nature Cell Biol 3: 745-750, 2001

    Google Scholar 

  20. Whitley Kern ER, Chatterjee S, Chou J, Roizman B: Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J Clin Investigation 91: 2837-2843, 1993

    Google Scholar 

  21. Goldstein DJ, Weller SK: Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166: 41-51, 1988

    Google Scholar 

  22. Mineta T, Rabkin SD, Martuza RL: Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 54: 3963-3966, 1991

    Google Scholar 

  23. Coen DM, Goldstein DJ, Weller SK: Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob Agents Chemother 33: 1395-1399, 1989

    Google Scholar 

  24. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med 1: 938-943, 1995

    Google Scholar 

  25. Chambers R, Gillespie GY, Soroceanu L, Andreansky S, Chatterjee S, Chou J, Roizman B, Whitley RJ: Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. PNAS 92(5): 1411-1415, 1995

    Google Scholar 

  26. Markert JM, Malick A, Coen DM, Martuza RL: Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurg 32(4): 597-603, 1993

    Google Scholar 

  27. Sundaresan P, Hunter WD, Martuza RL, Rabkin SD: Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 74(8): 3832-3841, 2000

    Google Scholar 

  28. Hunter WD, Martuza RL, Feigenbaum F, Todo T, Mineta T, Yazaki T, Toda M, Newsome JT, Platenberg RC, Manz HJ, Rabkin SD: Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 73(8): 6319-6326, 1999

    Google Scholar 

  29. Valyi-Nagy T, Fareed MU, O'Keefe JS, Gesser RM, MacLean AR, Brown SM, Spivack JG, Fraser NW: The HSV-1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol 75: 2059-2063, 1994

    Google Scholar 

  30. Randazzo RB, Kesari S, Gesser RM, Alsop D, Ford JC, Brown SM, Maclean A, Fraser NW: Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 211(1): 94-101, 1995

    Google Scholar 

  31. Kesari S, Randazzo BP, Valyi-Nagy T, Huang QS, Brown SM, MacLean AR, Lee VM, Trojanowski JQ, Fraser NW: Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest 73(5): 636-648, 1995

    Google Scholar 

  32. Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J, Harland J, Mabbs R, Brown M: The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9(6): 398-406, 2002

    Google Scholar 

  33. Harland J, Papanastassiou V, Brown SM: HSV1716 persistence in primary human glioma cells in vitro. Gene Ther 9: 1194-1198, 2002

    Google Scholar 

  34. Advani SJ, Sibley GS, Song PY, Hallahan DE, Kataoka Y, Roizman B, Weichselbaum RR: Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther 5(2): 160-165, 1998

    Google Scholar 

  35. Bradley JD, Kataoka Y, Advani S, Chung SM, Arani RB, Gillespie GY, Whitley RJ, Markert JM, Roizman B, Weichselbaum RR: Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Canc Res 5: 1517-1522, 1999

    Google Scholar 

  36. Blank SV, Rubin SC, Coukos G, Amin KM, Albelda SM, Molnar-Kimber KL: Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Human Gene Ther 13(5): 627-639, 2002

    Google Scholar 

  37. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ: Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 10(1): 17-30, 2000

    Google Scholar 

  38. Chahlavi A, Todo T, Martuza RL, Rabkin SD: Replicationcompetent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1(2): 162-169, 1999

    Google Scholar 

  39. Toda M, Rabkin SD, Martuza RL: Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 9(15): 2177-2185, 1998

    Google Scholar 

  40. Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH, Federoff HJ, Fong Y: Oncolytic viral hterapy for human colorectal cancer and liver metastases using a mutli-mutated herpes simplex virus type-1 (G207). GASEB J 13(11): 1325-1334, 1999

    Google Scholar 

  41. Walker JR, McGeagh KG, Sundaresan P, Jorgensen TJ, Rabkin SD, Martuza RL: Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 10(13): 2237-2243, 1999

    Google Scholar 

  42. Cozzi PJ, Burke PB, Bhargav A, Heston WD, Huryk B, Scardino PT, Fong Y: Oncolytic viral gene therapy for prostate cancer using two attenuated, replicationcompetent, genetically engineered herpes simplex viruses. Prostate 53(2): 95-100, 2002

    Google Scholar 

  43. McAuliffe PF, Jarnagin WR, Johnson P, Delman KA, Federoff H, Fong Y: Effective treatment of pancreatic tumors with two multimutated herpes simplex oncolytic viruses J Gastrointest Surg 4(6): 580-588, 2000

    Google Scholar 

  44. Carew JF, Kooby DA, Halterman MW, Federoff HJ, Fong Y: Selective infection and cytolysis of human head and neck squamous cell carcinoma with sparing of normal mucosa by a cytotoxic herpes simplex virus type 1 (G207). Hum Gene Ther 10(10): 1599-1606, 1999

    Google Scholar 

  45. Wong RJ, Kim S, Joe JK, Shah JP, Johnson PA, Fong Y: Effective treatment of head and neck squamous cell carcinoma by an oncolytic herpes simplex virus. J AmColl Surg 193(1): 12-21, 2001

    Google Scholar 

  46. Fong Y, Kemeny N, Jarnagin W, Stanziale S, Guilfoyle B, Gusani N, Joe J, Blumgart L, Lakeman F, Gammon K, Perterkin J, Horsburgh B, Tufaro F: Phase 1 study of a replication-competent herpes simplex oncolytic virus for treatment of hepatic colorectal metastases. Amer Soc Clin Oncol (URL: www.asco.org), 2002 (Abstract 27)

  47. Andreansky S, He B, van Cott J, McGhee J, Markert JM, Gillespie GY, Roizman B, Whitley RJ: Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 5(1): 121-130, 1998

    Google Scholar 

  48. Parker JN, Gillespie GY, Love C E, Randall S, Whitley RJ, Markert JM: Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. PNAS 97(5): 2208-2213, 2000

    Google Scholar 

  49. Chase M, Chung R, Chiocca EA: An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotechnol 16: 444-448, 1998

    Google Scholar 

  50. Ichikawa T, Petros WP, Ludeman SM, Fangmeier J, Hochberg FH, Colvin OM, Chiocca EA: Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector. Cancer Res 61(3): 864-868, 2001

    Google Scholar 

  51. Wei MX, Tamiya T, Rhee RJ, Breakefield SO, Chiocca EA: Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cycloposphamide/ cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1: 1171-1177, 1995

    Google Scholar 

  52. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkestein D, Harsh GR, Louis D N, Bartus RT, Hochberg FH, Chiocca EA: Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral resonses. Nature Med 5(8): 881-887, 1999

    Google Scholar 

  53. Pawlik TM, Nakamura H, Mullen JT, Kasuya H, Yoon SS, Chandrasekhar S, Chiocca EA, Tanabe KK: Prodrug bioactivation and oncolysis of diffuse liver metastases by a 223 herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 95(5): 1171-1181, 2002

    Google Scholar 

  54. Fields BN, Kinipe DM, and Howley PM: Fundamental Virology: 3rd edn. Lippincott Williams and Wilkins, Philadelphia, 1996, pp 44-45

    Google Scholar 

  55. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR: Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 57(13): 2559-2563, 1997

    Google Scholar 

  56. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R: A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7: 120-126, 2001

    Google Scholar 

  57. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373-376, 1996

    Google Scholar 

  58. Smith RR, Huebner RJ, Rowe WP, Schatten WE, Thomas LB: Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9: 1211-1218, 1956

    Google Scholar 

  59. Barker DD, Berk AJ: Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156: 107-121, 1987

    Google Scholar 

  60. Hall A, Dix BR, O'Carroll SJ, Braithwaite AW: p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nature Med 4: 1068-1072, 1998

    Google Scholar 

  61. Goodrum F, Ornelles D: p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 72: 9479-9490, 1998

    Google Scholar 

  62. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H: Replication of ONYX-015, a potential anticancer adenovirus is independent of p53 status in tumor cells. J Virol 72: 9470-9478, 1998

    Google Scholar 

  63. Harda JN, Berk AJ: p53-Independent and-dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 73(7): 5333-5344, 1999

    Google Scholar 

  64. Hay J G, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom WN: Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1b-55kD gene. Human Gene Ther 10(4): 579-590, 1999

    Google Scholar 

  65. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B geneattenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 3(6): 639-645, 1997

    Google Scholar 

  66. Kirn DH: Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 8: 89-98, 2001

    Google Scholar 

  67. Heise C, Ganly I, Kim YT, Sampson-Johannes A, Brown R, Kirn D: Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther 7(22): 1925-1929, 2000

    Google Scholar 

  68. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Terrier-Lacombe MJ, Bressac De-Paillerets B, Barrois M, Feunteun J, Kirn DH, Vassal G: Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res 62(3): 764-772, 2002

    Google Scholar 

  69. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C, Randlev B, Gillenwater AM, Bruso P, Kaye SB, Hong WK, Kirn DH: A controlled trial of intratumoral ONYX-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med 6(8): 879-885, 2000

    Google Scholar 

  70. Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D, Sugarman B, Demers GW, Engler H, Johnson D, Shabram P: Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nature Biotechnol 19(11): 1035-1041, 2001

    Google Scholar 

  71. Mayol X, Garriga J, Grana X: Cell cycle-dependent phosphorylation of the retinoblastoma-related protein p130. Oncogene 11(4): 801-808, 1995

    Google Scholar 

  72. Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B, Pestell RG: Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol Cell Biol 18(6): 3212-3222, 1998

    Google Scholar 

  73. Hamel W, Westphal M, Shepard HM: Loss in expression of the retinoblastoma gene product in human gliomas is associated with advanced disease. J Neuro-Oncology, 16(2): 159-165, 1993

    Google Scholar 

  74. Whyte P, Ruley HE, Harlow E: Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62(1): 257-265, 1998

    Google Scholar 

  75. Whyte P, Williamson NM, Harlow E: Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67-75, 1989

    Google Scholar 

  76. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D: An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Med 6(10): 1134-1139, 2000

    Google Scholar 

  77. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP: A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19(1): 2-12, 2000

    Google Scholar 

  78. Suzuki K, Alemany R, Yamamoto M, Curiel DT: The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 8(11): 3348-3359, 2002

    Google Scholar 

  79. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ: Identification of a conserved receptorbinding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286: 1568-1571, 1999

    Google Scholar 

  80. Harrison D, Sauthoff H, Heitner S, Jagirdar J, Rom WN, Hay JG: Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved-deletion of the viral 224 E1b-19-kD gene increases the viral oncolytic effect. Human Gene Ther 12(10): 1323-1332, 2001

    Google Scholar 

  81. Sauthoff H, Heitner S, Rom WN, Hay JG: Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 11(3): 379-388, 2000

    Google Scholar 

  82. Sauthoff H, Pipiya T, Heitner S, Chen S, Norman RG, Rom WN, Hay JG: Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 13(15): 1859-1871, 2002

    Google Scholar 

  83. Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, Alemany R, Fueyo J, Curiel DT, Vassal G, Pinedo HM, Vandertop WP, Gerritsen WR: Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 62(20): 5736-5742, 2002

    Google Scholar 

  84. Alexander DJ, Allan WH: Newcastle disease virus pathotypes. Avian Path 3(4): 269-278, 1974

    Google Scholar 

  85. Schirrmacher V, Griesbach A, Ahlert T: Antitumor effects of Newcastle disease virus in vivo: Local versus systemic effects. Int J Oncol 18(5): 945-952, 2001

    Google Scholar 

  86. Reichard KW, Lorence RM, Cascino CJ, Peeples ME, Walter RJ, Fernando MB, Reyes HM, Greager JA: Newcastle disease virus selectively kills human tumor cells. J Surg Res 52(5): 448-453, 1992

    Google Scholar 

  87. Wheelock EF, Dingle JH: Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. NEJM 271(13): 645-651, 1964

    Google Scholar 

  88. Cassel WA, Garret RE: Newcastle disease virus as an antineoplastic agent. Cancer 18(7): 863-868, 1965

    Google Scholar 

  89. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW: The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by Reovirus. EMBO J 17: 3351-3362, 1998

    Google Scholar 

  90. Lorence RM, Katubig BB, Reichard KW, Reyes HM, Phuangsab A, Sassetti M D, Walter RJ, Peeples ME: Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Canc Res 54(23): 6017-6021, 1994

    Google Scholar 

  91. Lorence RM, Reichard KW, Katubig BB, Reyes HM, Phuangsab A, Mitchell BR, Cascino CJ, Walter RJ, Peeples ME: Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J Natl Canc Inst 86(16): 1228-1233, 1994

    Google Scholar 

  92. Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ: Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 172(1): 27-36, 2001

    Google Scholar 

  93. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O'Neil JD, Groene WS, Roberts MS, Rabin H, Bamat MK, Lorence RM: Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20: 2251-2266, 2002

    Google Scholar 

  94. Csatary LK: Viruses in the treatment of cancer: letter to the editor. Lancet 2(7228): 825, 1971

    Google Scholar 

  95. Csatary LK, Moss RW, Beuth J, Torocsik B, Szeberenyi J, Bakacs T: Beneficial treatment of patients with advanced cancer using a Newcastle disease virus vaccine (MTH-68/H). Anticancer Res 19(1B): 635-638, 1999

    Google Scholar 

  96. Castary LK, Eckhardt S, Bukosza I, Czegledi F, Fenyvesi C, Gergely P, Bodey B, Csatary CM: Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev 17(6): 619-627, 1993

    Google Scholar 

  97. Csatary LK, Bakacs T: Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA 281(17): 1588-1589, 1999

    Google Scholar 

  98. Schirrmacher V, Ahlert T, Probstle T, Steiner HH, Herold-Mende C, Gerhards R, Hagmuller E, Steiner HH: Immunization with virus-modified tumor cells. Semin Oncol 25(6): 677-696, 1998

    Google Scholar 

  99. Haas C, Ertel C, Gerhards R, Schirrmacher V: Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle disease virus. Int J Oncol 13(6): 1105-1115, 1998

    Google Scholar 

  100. Zorn U, Dallmann I, Grosse J, Kirchner H, Poliwoda H, Atzpodien J: Induction of cytokines and cytotoxicity against tumor cells by Newcastle disease virus. Cancer Biother 9(3): 225-235, 1994

    Google Scholar 

  101. Lorence RM, Rood PA, Kelley KW: Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-alpha and augmentation of its cytotoxicity. J Natl Canc Inst 80(16): 1305-1312, 1988

    Google Scholar 

  102. Cassel WA, Murras DR, Torbin AH, Olkowski ZL, Moore ME: Viral oncolysate in the management of malignant melanoma. I. Preparation of the oncolysate and measurement of immunologic responses. Cancer 40(2): 672-679, 1977

    Google Scholar 

  103. Murray DR, Cassel WA, Torbin AH, Olkowski ZL, Moore ME: Viral oncolysate in the management of malignant melanoma. II. Clinical studies. Cancer 40(2): 680-686, 1977

    Google Scholar 

  104. Cassel WA, Murray DR: A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother 9(4): 169-171, 1992

    Google Scholar 

  105. Plager C, Bowen JM, Fenoglio C: Adjuvant immunotherapy of M.D. Anderson hospital (MDAH) stage III-B malignant melanoma with Newcastle disease virus oncolysate. Proc Am Soc Clin Oncol 9: 281, A1091, 1990

    Google Scholar 

  106. Kirchner HH, Anton P, Atzpodien J: Adjuvant treatment of locally advanced renal cancer with autologous virusmodified tumor vaccines. World J Urol 13(3): 171-173, 1995

    Google Scholar 

  107. Mallmann P, Eis-Hübinger AM, Krebs D: Lymphokineactivated tumor-infiltrating lymphocytes and autologous tumor vaccine in breast and ovarian cancer. Onkologie 15: 490-496, 1992

    Google Scholar 

  108. Heicappell R, Schirrmacher V, von Hoegen P, Ahlert T, Appelhans B: Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects. Int J Cancer 37(4): 569-577, 1986

    Google Scholar 

  109. Ahlert T, Sauerbrei W, Bastert G, Ruhland S, Bartik B, Simiantonaki N, Schumacher J, Hacker B, Schumacher M, Schirrmacher V: Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. J Clin Oncol 15(4): 1354-1366, 1997

    Google Scholar 

  110. Pomer S, Schirrmacher V, Thiele R, Löhrke H, Staehler G: Tumor response and 4 year survival data of patients with advanced renal cell carcinoma treated with autologous tumor vaccine and subcutaneous r-IL-2 and IFN-alpha2b. Int J Oncol 6: 947-954, 1995

    Google Scholar 

  111. Liebrich W, Schlag P, Manasterski M, Lehner B, Stohr M, Moller P, Schirrmacher V: In vitro and clinical characterisation of a Newcastle disease virus-modified autologous tumour cell vaccine for treatment of colorectal cancer patients. Eur J Cancer 27(6): 703-710, 1991

    Google Scholar 

  112. Schlag P, Manasterski M, Gerneth T, Hohenberger P, Dueck M, Herfarth C, Liebrich W, Schirrmacher V: Active specific immunotherapy with Newcastle-diseasevirus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a phase II-trial. Cancer Immunol Immunother 35(3): 325-330, 1992

    Google Scholar 

  113. Ockert D, Schirrmacher V, Beck N, Stoelben E, Ahlert T, Flechtenmacher J, Hagmuller E, Buchcik R, Nagel M, Saeger HD: Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin Cancer Res 2(1): 21-28, 1996

    Google Scholar 

  114. Fields BN, Kinipe DM, Howley PM: Fundamental Virology: 3rd edn. Lippincott Williams and Wilkins, Philadelphia, 1996, pp 691-693

    Google Scholar 

  115. Guha A, Feldkamp MM, Lau N, Boss G, Pawson A: Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15(23): 2755-2765, 1997

    Google Scholar 

  116. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ: A mutant epidermal growth factor receptorcommonin human glioma confers enhanced tumorigenicity. PNAS 91(16): 7729-7731, 1994

    Google Scholar 

  117. Nister M, Claesson-Welsh L, Eriksson A, Heldin CH, Westermark B: Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J Biol Chem 266(25): 16755-16763, 1991

    Google Scholar 

  118. Coffey MC, Strong JE, Forsyth PA, Lee PW: Reovirus therapy of tumors with activated ras pathway. Science 282: 1332-1334, 1998

    Google Scholar 

  119. Wilcox ME, Yang W, Senger D, Rewcastle NB, Morris DG, Brasher PM, Shi ZQ, Johnston RN, Nishikawa S, Lee PW, Forsyth PA: Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Canc Inst 93(12): 903-912, 2001

    Google Scholar 

  120. Gromeier M, Alexander L, Wimmer E: Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. PNAS 93: 2370-2375, 1996

    Google Scholar 

  121. Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E: Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 73: 958-964, 1999

    Google Scholar 

  122. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. PNAS 12: 6803-6808, 2000

    Google Scholar 

  123. Mendelsohn CL, Wimmer E, Racaniello VR: Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56: 855-865, 1989

    Google Scholar 

  124. Hagino-Yamagishi K, Nomoto A: In vitro construction of poliovirus defective interfering particles. J Virol 63(12): 5386-5392, 1989

    Google Scholar 

  125. Ansardi DC, Porter DC, Morrow CD: Complementation of a poliovirus defective genome by a recombinant vaccinia virus which provides poliovirus P1 capsid precursor in trans. J Virol 67(6): 3684-3690, 1983

    Google Scholar 

  126. Ansardi DC, Porter DC, Morrow CD: Coinfection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures. J Virol 65(4): 2088-2092, 1991

    Google Scholar 

  127. Porter DC, Ansardi DC, Morrow CD: Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J Virol 69(3): 1548-1555, 1994

    Google Scholar 

  128. Ansardi DC, Porter DC, Jackson CA, Gillespie GY, Morrow CD: RNA replicons derived from poliovirus are directly oncolytic for human tumor cells of diverse origins. Cancer Res 61(23):8470-8479, 2001

    Google Scholar 

  129. Bledsoe AW, Gillespie GY, Morrow CD: Targeted foreign gene expression in spinal cord neurons using poliovirus replicons. J Neurovirol 6(2): 95-105, 2000

    Google Scholar 

  130. Jackson CA, Cobbs C, Peduzzi JD, Novak M, Morrow CD: Repetitive intrathecal injections of poliovirus replicons result in gene expression in neurons of the central nervous system without pathogenesis. Human Gene Ther 12(15): 1827-1841, 2001

    Google Scholar 

  131. URL: http://www.replicontechnologies.com/Technology. htm

  132. Ansardi DC, Moldoveanu Z, Porter DC, Walker DE, Conry RM, LoBuglio AF, McPherson S, Morrow C D: Characterization of poliovirus replicons encoding carcinoembryonic antigen. Cancer Res 54(24): 6359-6364, 1994

    Google Scholar 

  133. Porter DC, Ansardi DC, Wang J, McPherson S, Moldoveanu Z, Morrow CD: Demonstration of the speci-ficity of poliovirus encapsidation using a novel replicon which encodes enzymatically active firefly luciferase. Virology 243: 1-11, 1998

    Google Scholar 

  134. Bledsoe AW, Jackson CA, McPherson S, Morrow CD: Cytokine production in motor neurons by poliovirus replicon vector gene delivery. Nature Biotechnol 18(9): 964-969, 2000

    Google Scholar 

  135. Basak S, McPherson S, Kang S, Collawn JF, Morrow CD: Construction and characterization of encapsidated poliovirus replicons that express biologically active murine interleukin-2. J Interferon Cytokine Res 5: 305-313, 1998

    Google Scholar 

  136. Fields BN, Knipe DM, Howley PM: Fields Virology: 3rd edn. Lippincott-Raven, Philadelphia, 1996, p1163.

    Google Scholar 

  137. Wallack MK, Sivanandham M, Balch CM, Urist MM, Bland KI, Murray D, Robinson WA, Flaherty L, Richards JM, Bartolucci AA, Rosen L: Surgical adjuvant 226 active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 187(1): 69-79, 1998

    Google Scholar 

  138. Gridley DS, Andres ML, Li J, Timiryasova T, Chen B, Fodor I: Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy. Int J Oncol 13(5): 1093-1098, 1998

    Google Scholar 

  139. Timiryasova TM, Chen B, Haghighat P, Fodor I: Vaccinia virus-mediated expression of wild-type p53 suppresses glioma cell growth and induces apoptosis. Int J Oncol 14(5): 845-854, 1999

    Google Scholar 

  140. Timiryasova TM, Li J, Chen B, Chong D, Langridge WH, Gridley DS, Fodor I: Antitumor effect of vaccinia virus in glioma model. Oncol Res. 11(3): 133-44, 1999

    Google Scholar 

  141. Chen B, Timiryasova TM, Andres ML, Kajioka EH, Dutta-Roy R, Gridley DS, Fodor I: Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther 7(11): 1437-1447, 2000

    Google Scholar 

  142. Chen B, Timiryasova TM, Haghighat P, Andres ML, Kajioka EH, Dutta-Roy R, Gridley DS, Fodor I: Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J Immunother 24(1): 46-57, 2001

    Google Scholar 

  143. Buller RM, Smith GL, Cremer K, Notkins AL, Moss B: Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040): 813-815, 1985

    Google Scholar 

  144. Puhlmann M, Gnant M, Brown CK, Alexander HR, Bartlett DL: Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum Gene Ther 10(4): 649-657, 1999

    Google Scholar 

  145. McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, Moss B, Bartlett DL: Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 61(24): 8751-8757, 2001

    Google Scholar 

  146. Heise C, Lemmon M, Kirn D: Efficacy with a replicationselective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin Cancer Res 6(12): 4908-4914, 2000

    Google Scholar 

  147. Fields BN, Knipe DM, Howley PM: Fields Virology: 3rd edn. Lippincott-Raven, Philadelphia, 1996, p 2116

  148. Kundaje A, Eisenman S: (URL:) http://www.cs.columbia. edu/?abk2001/cellcycle.pdf. Modeling of the p53 pathway to cell cycle arrest and apoptosis: relevance to cancer. 1-19, 2001

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A.C., Benos, D., Yancey Gillespie, G. et al. Oncolytic Viruses: Clinical Applications as Vectors for the Treatment of Malignant Gliomas. J Neurooncol 65, 203–226 (2003). https://doi.org/10.1023/B:NEON.0000003651.97832.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEON.0000003651.97832.6c

Navigation