Skip to main content
Log in

Dynamic Encoding of Amplitude-Modulated Sounds at the Level of Auditory Nerve Fibers

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The relationship between the mean spike frequency of auditory nerve fibers and the levels of tonal stimuli with frequencies equal to the characteristic frequency can be presented as the “input–output” characteristic. In real auditory nerve fibers, the slope of this characteristic increases and its width decreases with increases in the level of spontaneous activity or the ability of fibers to generate spikes in the absence of a stimulus. However, real fibers with low spontaneous activity reproduce the amplitude modulation of sinusoidally amplitude-modulated signal significantly better than fibers with high levels of spontaneous activity. The simulation experiment reported here shows that the reason for the good reproduction of amplitude modulation in auditory nerve fibers is not the static profiles of the “input–output” characteristic but the dynamic properties of fibers which support the tuning (adaptation) of the threshold of the fiber to the level of the stimulus being applied. Because of their steep “input–output” characteristic, auditory nerve fibers with high levels of spontaneous activity can reproduce the modulation of sounds at subthreshold levels when a weak noise is added to the signal, thus demonstrating the property of stochastic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. Bibikov, Description of the Characteristics of Sounds by Neurons in the Auditory Systems of Terrestrial Vertebrates [in Russian], Nauka, Moscow (1987), pp.16–49.

    Google Scholar 

  2. N. G. Bibikov, “The auditory nerve,” in: Mechanisms of Functioning of Peripheral Elements of the Auditory Pathway[in Russian], M. A. Ostrovskii (ed.), All-Union Institute of Scientific and Technical Information (VINITI), Science and Technology, Vol. 39, pp. 122–211 (1988).

  3. N. G. Bibikov and G. A. Ivanitskii, “Modeling of spontaneous spike activity in the short-term adaptation of auditory nerve fibers,” Biofizika, 30, No. 1, 141–144 (1985).

    PubMed  Google Scholar 

  4. N. A. Dubrovskii and L. K. Rimskaya-Korsakova, “Identification of the parameters of models of auditory neurons involved in identifying sound modulations. The intrinsic periodicity of spike activity,” Akust. Zh., 43, No.4, 492–500 (1997).

    Google Scholar 

  5. N. A. Dubrovskii and L. K. Rimskaya-Korsakova, “Identification of the parameters of models of auditory neurons involved in identifying sound modulations. Dynamic and modulatory transfer characteristics,” Akust. Zh., 44, No. 2, 213–219 (1998).

    Google Scholar 

  6. L. K. Rimskaya-Korsakova, “Extraction of short time intervals by auditory nerve fibers,” Akust. Zh., 35, No. 5, 887–894 (1989).

    Google Scholar 

  7. V. N. Telepnev, “Loudness,” in: The Auditory System[in Russian], Ya. A. Al'tman (ed.),Nauka, Leningrad (1990), pp.14–42.

    Google Scholar 

  8. A. N. Temchin, “Reception and analysis of sound in the inner ear of terrestrial vertebrates,” Sensor. Sistemy, 2, No. 3, 312–332 (1988).

    Google Scholar 

  9. N. G. Bibikov, “Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog's midbrain,” Hear. Res., 173, 21–28 (2002).

    PubMed  Google Scholar 

  10. D. P. Corey and A. J. Hudspeth, “Kinetics of the receptor current in bullfrog saccular hair cell,” J. Neurosci., 3, 962–967 (1963).

    Google Scholar 

  11. J. L. Flanagan, Speech Analysis, Synthesis and Perception, Heidelberg, Berlin, New York (1972).

  12. R. D. Frisina, K. J. Karcich, T. C. Tracy, D. M. Sullivan, J. P. Walton, and J. Colombo, “Preservation of amplitude modulation coding in the presence of background noise by chinchilla auditory nerve fibers,” J. Acoust. Soc. Amer.,99, No. 1, 475–490 (1996).

    Google Scholar 

  13. R. D. Frisina, “Subcortical neural coding mechanisms for auditory temporal processing,” Hear. Res., 158, 1–27 (2001).

    PubMed  Google Scholar 

  14. C. D. Geisler, L. Deng, and S. Greenberg, “Thresholds for primary auditory fibers using statistically defined criteria,” J. Acoust. Soc. Amer., 77, No. 3, 1102–1109 (1985).

    Google Scholar 

  15. D. J. Gibson, E. D. Young, and J. A. Castalupes, “Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei,” J. Neurophysiol., 53, 940–958 (1985).

    PubMed  Google Scholar 

  16. K. R. Henry, “Noise improves transfer of near-threshold, phaselocked activity of the cochlear nerve: evidence for stochastic resonance?” J. Comp. Physiol., A184, 577–584 (1999).

    Google Scholar 

  17. E. Javel, “Coding of AM tones in the chinchilla auditory nerve: implication for the pitch of complex tones,” J. Acoust. Soc. Amer., 68, 133–140 (1980).

    Google Scholar 

  18. P. X. Joris and T. C. T. Yin, “Responses to amplitude-modulated tones in the auditory nerve of the cat,” J. Acoust. Soc. Amer., 91, No. 1, 215–232 (1992).

    Google Scholar 

  19. N. Y. Kiang, “A survey of recent developments in the study of audi-tory physiology,” Ann. Otol Rhinol. Laryngol., 77, 656–675 (1968).

    PubMed  Google Scholar 

  20. E. R. Lewis and K. R. Henry, “Non-linear effects of noise on phase-licked cochlear-nerve responses to sinusoidal stimuli,” Hear. Res., 92, 1–16 (1995).

    PubMed  Google Scholar 

  21. L. C. Liberman, “Auditory nerve responses from cats raised in a low-noise chamber,” J. Acoust. Soc. Amer., 63, 442–455 (1978).

    Google Scholar 

  22. M. C. Liberman and M. E. Oliver, “Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties,” J. Comp. Neurol., 223, 163–176 (1984).

    PubMed  Google Scholar 

  23. R. Meddis, “Simulation of mechanical to neural transduction in the auditory receptor,” J. Acoust. Soc. Amer., 79, No. 3, 702–711 (1986).

    Google Scholar 

  24. A. Merchan-Perez and M. C. Liberman, “Ultrastructural differences among afferent synapses on cochlear hair cells. Correlations with spontaneous discharge rate,” J. Comp. Neurol., 371, No. 2, 208–221 (1996).

    PubMed  Google Scholar 

  25. A. R. Moeller, “Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus,” Acta Physiol. Scand., 98, 157–167 (1976).

    PubMed  Google Scholar 

  26. R. P. Morse and E. F. Evans, “Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation,” Hear. Res., 133, 107–119 (1999).

    PubMed  Google Scholar 

  27. A. R. Palmer and I. J. Russell, “Phase-locking in the cochlear nerve of the guinea pig and its relation to the receptor potential of inner hair cell,” Hear. Res., 24, 1–15 (1986).

    PubMed  Google Scholar 

  28. R. Patuzzi and P. M. Sellick, “A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea,” J. Acoust. Soc. Amer., 74, No. 6, 1734–1741 (1983).

    Google Scholar 

  29. A. Rees and A. R. Palmer, “Neuronal responses to amplitude-modu-lated and pure-tone stimuli in the guinea pig inferior colliculus and their modification by broadband noise,” J. Acoust. Soc. Amer.,85, 1978–1994 (1989).

    Google Scholar 

  30. E. M. Relkin and J. R. Doucet, “Recovery from prior stimulation. I. Relationship to spontaneous firing rates of primary auditory neurons,” Hear. Res., 55, 215–222 (1991).

    PubMed  Google Scholar 

  31. W. S. Rhode and S. Greenberg, “Encoding of amplitude modulation in the cochlear nucleus of the cat,” J. Neurophysiol., 71, No. 5, 1797–1825 (1994).

    PubMed  Google Scholar 

  32. W. S. Rhode and P. H. Smith, “Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers,” Hear. Res., 18, 159–168 (1985).

    PubMed  Google Scholar 

  33. S. Ross, “A functional model of the hair cell-primary complex,” J. Acoust. Soc. Amer., 99, No. 4, 2221–2237 (1996).

    Google Scholar 

  34. M. B. Sachs and P. J. Abbas, “Rate versus level functions for audi-tory-nerve fibers in cats: tone-burst stimuli,” J. Acoust. Soc. Amer., 56, No. 6, 1835–1847 (1974).

    Google Scholar 

  35. M. B. Sachs, R. L. Winslow, and B. H. A. Sokolowski, “A computational model for rate-level functions from cat auditory-nerve fibers,” Hear. Res., 41, 61–70 (1989).

    PubMed  Google Scholar 

  36. R. Schoonhoven, V. F. Prijs, and J. H. M. Frijns, “Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres,” Hear. Res., 113, 247–260 (1997).

    PubMed  Google Scholar 

  37. S. A. Shamma and K. A. Morrish, “Synchrony suppression in complex stimulus responses of a biophysical model of the cochlea,” J. Acoust. Soc. Amer., 81, No. 5, 1486–1498(1987).

    Google Scholar 

  38. R. L. Smith and M. L. Brachman, “Response modulation of audito-ry nerve fibers by AM stimuli. Effects of average intensity,” Hear. Res., 2,123–133 (1980).

    PubMed  Google Scholar 

  39. J. Tougaard, “Signal detection theory, detectability and stochastic resonance effects,” Biol. Cybern., 87, 79–90 (2002).

    PubMed  Google Scholar 

  40. L. M. Ward, A. Neiman, and F. Moss, “Stochastic resonance in psychophysics and in animal behavior,” Biol. Cybern., 87, 91–101 (2002).

    PubMed  Google Scholar 

  41. T. F. Weiss and R. A. Leong, “A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechano-electric transmission stage,” Hear. Res., 20, No. 2, 175–195 (1985).

    PubMed  Google Scholar 

  42. I. M. Winter, D. Robertson, and G. K. Yates, “Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres,” Hear. Res., 45, 191–202 (1990).

    PubMed  Google Scholar 

  43. G. K. Yates, “Dynamic effects in the input/output relationship of auditory nerves,” Hear. Res., 27,221–230 (1987).

    PubMed  Google Scholar 

  44. G. K. Yates, “Auditory-nerve spontaneous rates vary predictably with threshold,” Hear. Res., 57, 57–62 (1991).

    PubMed  Google Scholar 

  45. M. Zagaeski, A. R. Cody, I. J. Russell, and D. C. Mountain, “Transfer characteristic of the inner hair cell synapse: steady-state analysis,” J. Acoust. Soc. Amer., 95, No. 6, 3430–3434 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimskaya-Korsakova, L.K., Telepnev, V.N. & Dubrovksii, N.A. Dynamic Encoding of Amplitude-Modulated Sounds at the Level of Auditory Nerve Fibers. Neurosci Behav Physiol 35, 71–81 (2005). https://doi.org/10.1023/B:NEAB.0000049653.21291.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000049653.21291.96

Navigation