Skip to main content
Log in

Unipolar Brush Cells – a New Type of Excitatory Interneuron in the Cerebellar Cortex and Cochlear Nuclei of the Brainstem

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Published data and the authors' own studies on the morphology, neurochemical specialization, and spatial organization of unipolar brush neurons (UBN) in the cerebellar cortex and cochlear nuclei of the brainstem are reviewed. UBN represent an exclusive category of excitatory interneurons, with a single dendrite which forms a compact branching with a shape reminiscent of that of a brush in its terminal segment. These cells are characterized by an uneven distribution in the granular layer of the cerebellum, being located mainly in its vestibular zones. UBN synthesize glutamate, calretinin, and metabotropic and ionotropic glutamate receptors. The dendritic brush of UBN form giant synapses with the rosettes of glutamatergic and cholinergic mossy afferent fibers. UBN axons form an intracortical system of mossy fibers which, forming rosettes and glomeruli, make contact with the dendrites of other UBN and granule cells. In the circuits of interneuronal communications, UBN can be regarded as an intermediate component, amplifying the excitatory effects of mossy afferent fibers on granule cells in the cerebellar cortex and cochlear nuclei of the brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Antonova, Neurons and Interneuronal Connections in the Cerebellar Cortex of Various Mammals[in Russian], Dissertation for Doctorate in Biological Sciences, Moscow (1967).

  2. S. G. Kalinichenko, “Colocalization of aspartate aminotransferase and immunoreactive calretinin in unipolar brush cells–a new human cerebellar cortex interneuron,” in: Basic Science and Progress in Clinical Medicine[in Russian] Meditsina, Moscow 91998), pp. 88–89.

  3. S. G. Kalinichenko and I. V. Dyuizen, “The mediator specialization of neurons in the human cerebellar cortex,” Morfologiya, 109, No. 2, 57 (1996).

    Google Scholar 

  4. S. G. Kalinichenko, V. E. Okhotin, and T. Yu. Gartsman, “Localization of immunoreactive calbindin (CB), calretinin (CR), and NO synthase in Lugaro cells and their functional significance in corticocerebellar modules,” Ross. Morfol. Vedomosti, No. 1–2, 76 (1999).

  5. S. G. Kalinichenko, V. E. Okhotin, and P. A. Motavkin, “Aspartate aminotransferase in the human cerebellar cortex,” Tsitologiya, 37, No. 9/10, 910–914 (1995).

    Google Scholar 

  6. S. G. Kalinichenko, V. E. Okhotin, and P. A. Motavkin, “The NO-ergic function of Lugaro and Golgi cells in the rabbit cerebellar cortex,” Tsitologiya, 39, No. 2/3, 159–163 (1997).

    Google Scholar 

  7. S. G. Kalinichenko, V. E. Okhotin, and A. V. Revishchin, “Excitatory calretinin-positive unipolar brush cells in the cerebellar cortex,” in: Organization and Plasticity of the Cerebral Cortex [in Russian], Institute of the Brain Press, Russian Academy of Medical Sciences, Moscow (2001).

    Google Scholar 

  8. T. A. Leontovich, Neuronal Organization of Subcortical Formations in the Forebrain[in Russian] Meditsina, Moscow (1978).

  9. V. E. Okhotin and S. G. Kalinichenko, “Localization of NO synthase in Lugaro cells and the mechanisms of the NO-ergic interaction between inhibitory interneurons in the rabbit cerebellar cortex,” Morfologiya, 115, No. 3, 52–61 (1999).

    Google Scholar 

  10. L. C. Abbott and D. M. Jacobowitz, “Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum,” Anat. Embryol., 191, 541–559 (1995).

    PubMed  Google Scholar 

  11. J. Altman and S. A. Bayer, “Time of origin and distribution of a new cell type in the rat cerebellar cortex,” Exptl. Brain Res., 29, 265–274 (1977).

    Google Scholar 

  12. J. Altman and S. A. Bayer, Development of the Cerebellar System in Relation to its Evolution, Structure and Function, CRC Press, Boca Raton, Florida (1996).

    Google Scholar 

  13. R. Anelli, M. E. Dunn, and E. Mugnaini, “Unipolar brush cells develop a set of characteristic features in primary cerebellar cul-tures,” J. Neurocytol., 29, 129–144 (2000).

    PubMed  Google Scholar 

  14. R. Anelli and E. Mugnaini, “Enrichment of unipolar brush cell-like neurons in primary rat cerebellar cultures,” Anat. Embryol., 203, 283–292 (2001).

    PubMed  Google Scholar 

  15. R. Arai, L. Winsky, M. Arai, and D. M. Jacobowitz, “Immuno-cytochemical localization of calretinin in the rat hindbrain,” J. Comp. Neurol., 310, 21–44 (1991).

    PubMed  Google Scholar 

  16. N. H. Barmack, R. W. Baughman, and F. P. Eckenstein, “Cholinergic innervation of the cerebellum of rat, rabbit, cat and monkey as revealed by choline acetyltransferase activity and immunohisto-chemistry,” J. Comp. Neurol., 317, 233–249 (1993).

    Google Scholar 

  17. N. H. Barmack, R. W. Baughman, F. P. Eckenstein, and H. Shojaku, “Secondary vestibular cholinergic projection to the cerebellum of rabbit as revealed by choline acetyltransferase immunohistochem-istry, retrograde and orthograde tracers,” J. Comp. Neurol., 317, 250–270 (1993).

    Google Scholar 

  18. N. H. Barmack, R. W. Baughman, P. Errico, and H. Shojaku, “Vestibular primary afferent projection to cerebellum of the rabbit,” J. Comp. Neurol., 327, 521–534 (1993).

    PubMed  Google Scholar 

  19. A. S. Berrebi, J. I. Morgan, and E. Mugnaini, “The Purkinje cell class may extent beyond the cerebellum,” J. Neurocytol., 19, 643–654 (1990).

    PubMed  Google Scholar 

  20. B. Berthie and H. Axelrad, “Granular layer collaterals of the unipolar brush cell axon display rosette-like excrescences. A Golgi study in the rat cerebellar cortex,” Neurosci. Lett., 167, 161–165 (1994).

    PubMed  Google Scholar 

  21. D. Billups, Y.-B. Birnstiel, and N. T. Slater, “NMDA receptor-medi-ated currents in rat cerebellar granule and unipolar brush cells,” J. Neurophysiol., 87, 1948–1959 (2002).

    PubMed  Google Scholar 

  22. J. M. Bower and D. C. Woolston, “Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex,” J. Neurophysiol., 49, 745–766 (1983).

    PubMed  Google Scholar 

  23. E. Braak and H. Braak, “The new monodendritic neuronal type within the adult human cerebellar granular cell layer shows calretinin-immunoreactivity,” Neurosci. Lett., 154, 199–202 (1993).

    PubMed  Google Scholar 

  24. A. Brodal and P. A. Drablos, “Two types of mossy fiber terminals in the cerebellum and their regional distribution,” J. Comp. Neurol., 121, 173–187 (1963).

    PubMed  Google Scholar 

  25. M. Casado, P. Isope, and P. Ascher, “Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression,” Neuron, 33, 123–130 (2002).

    PubMed  Google Scholar 

  26. D. Cohen and Y. Yarom, “Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers,” Proc. Natl. Acad. Sci. USA, 98, 15032–15036 (1998).

    Google Scholar 

  27. D. Cohen and Y. Yarom, “Cerebellar on-beam and lateral inhibition: two functionally distinct circuits,” J. Neurophysiol., 83, 1932–1940 (2000).

    PubMed  Google Scholar 

  28. M. G. Cozzi, P. Rosa, A. Greco, et al., “Immunohistochemical localization of secretogranin II in the rat cerebellum,” Neurosci., 28, 423–441 (1989).

    Google Scholar 

  29. F. Crick, “Do dendritic spines twitch?” Trends Neurosci., 5, 44–46 (1982).

    Google Scholar 

  30. N. C. Danbolt, “The high affinity uptake system for excitatory amino acids in the brain,” Prog. Neurobiol., 44, 377–396 (1994).

    PubMed  Google Scholar 

  31. K. A. Davis and E. D. Young, “Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus,” J. Neurophysiol., 83, 926–940 (2000).

    PubMed  Google Scholar 

  32. A. Devor, “Is the cerebellum like cerebellar-like structures?” Brain Res. Dev., 34, 149–156 (2000).

    Google Scholar 

  33. M. R. Dino and E. Mugnaini, “Postsynaptic actin filaments at the giant mossy fiber-unipolar brush cell synapse,” Synapse, 38, 499–510 (2000).

    PubMed  Google Scholar 

  34. M. R. Dino, M.-G. Nunzi, R. Anelli, and E. Mugnaini, “Unipolar brush cells of the vestibulocerebellum: afferents and targets,” Progr. Brain Res., 124, 123–137 (2000).

    Google Scholar 

  35. M. R. Dino, A. A. Perachio, and E. Mugnaini, “Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil,” Exptl. Brain Res., 140, 162–170 (2001).

    Google Scholar 

  36. M. R. Dino, R. J. Schuerger, Y.-B. Liu, et al., “Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum,” Neurosci., 98, 625–636 (2000).

    Google Scholar 

  37. M. R. Dino, F. H. Willard, and E. Mugnaini, “Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex,” J. Neurocytol., 28, 99–123 (1999).

    PubMed  Google Scholar 

  38. A. S. Dogiel, “Die Nervenelemente in Kleinhirn der Vogel und Saugethiere,” Arch. Mikr. Anat., 47, 707–719 (1896).

    Google Scholar 

  39. N. Dumesnil-Bousez and C. Sotelo, “The dorsal cochlear nucleus of the adult Lurcher mouse is specifically invaded by embryonic grafted Purkinje cells,” Brain Res., 622, 343–347 (1993).

    PubMed  Google Scholar 

  40. F. A. Edwards, “LTP–a structural model to explain the inconsistencies,” Trends Neurosci., 18, 250–255 (1995).

    PubMed  Google Scholar 

  41. F. A. Edwards, “Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation,” Physiol. Rev., 75, 759–787 (1995).

    PubMed  Google Scholar 

  42. F. Engert and T. Bonhoeffer, “Dendritic spine changes associated with hippocampal long-term synaptic plasticity,” Nature, 399, 66–70 (1999).

    Google Scholar 

  43. E. Fifkova and M. Morales, “Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation,” Int. Rev. Cytol., 139, 267–307 (1992).

    PubMed  Google Scholar 

  44. M. Fischer, S. Kaech, D. Knutti, and A. Matus, “Rapid actin-based plasticity in dendritic spines,” Neuron, 20, 847–854 (1998).

    PubMed  Google Scholar 

  45. A. Floris, M. R. Dino, D. M. Jacobowitz, and E. Mugnaini, “The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry,” Anat. Embryol., 189, 495–520 (1994).

    PubMed  Google Scholar 

  46. M. Garwicz, H. Jorntell, and C.-F. Ekerot, “Cutaneous receptive fields and topography of mossy fibres and climbing fibers projecting to cat cerebellar C3 zone,” J. Physiol. (London), 512, 277–293 (1998).

    PubMed  Google Scholar 

  47. Y. Geinisman, L. de Toledo-Morrell, F. Morell, et al., “Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones,” Hippocampus, 3, 435–445 (1993).

    PubMed  Google Scholar 

  48. F. J. Geurts, J.-P. Timmermans, R. Shigemoto, and E. De Schutter, “Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum,” Neurosci., 104, 499–512 (2001).

    Google Scholar 

  49. M. Glitsch, I. Llano, and A. Marty, “Glutamate as a candidate retrograde messenger at interneuron-Purkinje cell synapses of rat cere-bellum,” J. Physiol. (London), 497, 531–537 (1996).

    PubMed  Google Scholar 

  50. N. L. Godling and D. Oertel, “Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus,” J. Neurophysiol., 78, 248–260 (1997).

    PubMed  Google Scholar 

  51. G. Gunduppa-Sulur, E. De. Schutter, and J. M. Bower, “Ascending granule cell axon: an important component of the cerebellar cortical circuitry,” J. Comp. Neurol., 408, 580–596 (1999).

    PubMed  Google Scholar 

  52. S. Halpain, A. Hipolito, and L. Saffer, “Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin,” J. Neurosci., 18, 9835–9844 (1998).

    PubMed  Google Scholar 

  53. J. Hamori and J. Somogyi, “Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study,” J. Comp. Neurol., 220, 365–377 (1983).

    PubMed  Google Scholar 

  54. J. Harris, S. Moreno, and E. Mugnaini, “Unusual neurofilament composition in cerebellar brush neurons,” J. Neurocytol., 22, 1039–1059 (1993).

    PubMed  Google Scholar 

  55. T. D. Heiman-Patterson and N. L. Strominger, “Morphological changes in the cochlear nuclear complex in primate phylogeny and development,” J. Morphol., 196, 289–306 (1985).

    Google Scholar 

  56. S. Hockfield, “Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization,” Science, 237, 67–70 (1987).

    PubMed  Google Scholar 

  57. M. Ibrahim, P.-A. Menoud, and M. R. Celio, “Neurones in the adult rat anterior medullary velum,” J. Comp. Neurol., 419, 122–134 (2000).

    PubMed  Google Scholar 

  58. M. Ito, The Cerebellum and Neural Control, Raven Press, New York (1984).

    Google Scholar 

  59. D. Jaarsma, M. R. Dino, C. Cozzari, and E. Mugnaini, “Cerebellar choline acetyltransferase positive mossy fibers and their granule and unipolar brush cell targets: a model for central cholinergic nicotinic neurotransmission,” J. Neurocytol., 25, 829–842 (1996).

    PubMed  Google Scholar 

  60. D. Jaarsma, M. R. Dino, H. Ohishi, et al., “Metabotropic glutamate receptors of unipolar brush cells are primarily associated with non-synaptic appendages in rat cerebellar cortex and cochlear nuclear complex,” J. Neurocytol., 27, 303–327 (1998).

    PubMed  Google Scholar 

  61. D. Jaarsma, R. J. Wenthold, and E. Mugnaini, “Glutamate receptor subunits at mossy fiber-unipolar brush cell synapses: light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat,” J. Comp. Neurol., 357, 145–160 (1995).

    PubMed  Google Scholar 

  62. D. M. Jacobowitz and L. Winsky, “Immunocytochemical localization of calretinin in the forebrain of the rat,” J. Comp. Neurol., 304, 198–218 (1991).

    PubMed  Google Scholar 

  63. R. L. Jakab and J. Hamori, “Quantitative morphology and synaptology of cerebellar glomeruli in the rat,” Anat. Embryol., 179, 81–88 (1988).

    PubMed  Google Scholar 

  64. G. A. Kinney, L. S. Overstreet, and N. T. Slater, “Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells,” J. Neurophysiol., 78, 1320–1333 (1997).

    PubMed  Google Scholar 

  65. T. Kitahara, N. Takeda, P. C. Emson, et al., “Changes in nitric oxide synthase-like immunoreactivities in unipolar brush cells in the rat cerebellar flocculus after unilateral labyrinthectomy,” Brain Res., 765, 1–6 (1997).

    PubMed  Google Scholar 

  66. T. Knopfel and P. Grandes, “Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells,” Cerebellum, 1, 19–26 (2002).

    PubMed  Google Scholar 

  67. F. P. Kolb, G. Arnold, R. Lerch, et al., “Spatial distribution of field potential profiles in the cat cerebellar cortex evoked by peripheral and central inputs,” Neurosci., 81, 1155–1181 (1997).

    Google Scholar 

  68. G. E. Korte and E. Mugnaini, “The cerebellar projection of the vestibular nerve in the cat,” J. Comp. Neurol., 184, 265–278 (1979).

    PubMed  Google Scholar 

  69. J. J. Krupp, B. Vissel, C. G. Thomas, et al., “Interactions of calmodulin and alpha-actin with the NR1 subunit modulate Ca2+-dependent activation of NMDA receptors,” J. Neurosci., 19, 1165–1178 (1999).

    PubMed  Google Scholar 

  70. R. R. Llinas and K. D. Walton, “Cerebellum,” in: The Synaptic Organization of the Brain, Oxford University Press, New York (1998), 4th Edition, pp. 255–288.

    Google Scholar 

  71. E. K. Michaelis, “Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging,” Prog. Neurobiol., 54, 369–415 (1998).

    PubMed  Google Scholar 

  72. J. C. Montgomery, S. Coombs, R. A. Conley, and D. Bodznick, “Hindbrain sensory processing in lateral line, electrosensory and auditory systems: a comparative overview of anatomical and functional similarities,” Auditory Neurosci., 1, 207–231 (1995).

    Google Scholar 

  73. J. K. Moore, “The human auditory brain stem: a comparative view,” Hear. Res., 29, 1–32 (1987).

    PubMed  Google Scholar 

  74. J. K. Moore and K. K. Osen, “The cochlear nuclei in man,” Amer. J. Anat., 153, 393–418 (1979).

    Google Scholar 

  75. F. Morin, M. R. Dino, and E. Mugnaini, “Postnatal differentiation of unipolar brush cells and mossy fiber-unipolar brush cell synapses in rat cerebellum,” Neurosci., 104, 1127–1139 (2001).

    Google Scholar 

  76. E. Mugnaini, “The histology and cytology of the cerebellar cortex,” in: The Comparative Anatomy and Histology of the Cerebellum: the Human Cerebellum, Cerebellar Connections and Cerebellar Cortex, University of Minneapolis Press, Minneapolis (1972), pp. 201–264.

    Google Scholar 

  77. E. Mugnaini, M. R. Dino, and D. Jaarsma, “The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry,” Progr. Brain Res., 114, 131–150 (1997).

    Google Scholar 

  78. E. Mugnaini and A. Floris, “The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex,” J. Comp. Neurol., 339, 174–180 (1994).

    PubMed  Google Scholar 

  79. E. Mugnaini, A. Floris, and M. Wright-Gross, “The extraordinary synapses of the unipolar brush cell: an electron microscopic study in the rat cerebellum,” Synapse, 16, 284–311 (1994).

    PubMed  Google Scholar 

  80. E. Mugnaini and L. Maler, “Comparison between the fish elec-trosensory lateral line lobe and the mammalian dorsal cochlear nucleus,” J. Comp. Physiol., 173, 683–685 (1993).

    Google Scholar 

  81. E. Mugnaini, G. Sekerkova, and J. F. Baker, “Unipolar brush cells may contribute to cerebellar estimation of head velocity,” Soc. Neurosci. Abstr., 26, 2553 (2000).

    Google Scholar 

  82. D. G. Munoz, “Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity,” Brain Res., 528, 335–338 (1990).

    PubMed  Google Scholar 

  83. R. A. Nicoll, M. Frerking, and D. Schmitz, “AMPA receptors jump the synaptic cleft,” Nat. Neurosci., 3, 527–529 (2000).

    PubMed  Google Scholar 

  84. E. A. Nimchinsky, B. L. Sabatini, and K. Svoboda, “Structure and function of dendritic spines,” Ann. Rev. Physiol., 64, 313–353 (2002).

    Google Scholar 

  85. M.-G. Nunzi, S. Birnstiel, B. J. Bhattacharyya, et al., “Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex,” J. Comp. Neurol., 434, 329–341 (2001).

    PubMed  Google Scholar 

  86. M.-G. Nunzi and E. Mugnaini, “Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocere-bellum,” J. Comp. Neurol., 422, 55–65 (2000).

    PubMed  Google Scholar 

  87. M.-G. Nunzi, R. Shigemoto, and E. Mugnaini, “Differential expression of calretinin and metabotropic glutamate receptor mGluR1a defines subsets of unipolar brush cells in mouse cerebellum,” J. Comp. Neurol., 451, 189–199 (2002).

    PubMed  Google Scholar 

  88. H. Ohishi, R. Ogawa-Neguro, R. Shigemoto, et al., “Immuno-histochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex,” Neuron, 13, 55–66 (1994).

    PubMed  Google Scholar 

  89. V. E. Okhotin and S. G. Kalinichenko, “Localization of NO-synthase in Lugaro cells and the mechanisms of NO-ergic interaction between inhibitory interneurons in the rabbit cerebellum,” Neurosci. Behav. Physiol, 30, No. 5, 525–533 (2000).

    PubMed  Google Scholar 

  90. E. M. Ostapoff, J. J. Feng, and D. K. Morest, “A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties,” J. Comp. Neurol., 346, 19–42 (1994).

    PubMed  Google Scholar 

  91. S. L. Palay and V. Chan-Palay, Cerebellar Cortex: Cytology and Organization, Springer-Verlag, Berlin (1974).

    Google Scholar 

  92. R. S. Petralia, M. E. Rubio, Y.-X. Wang, and R. J. Wenthold, “Differential distribution of glutamate receptors in the cochlear nuclei,” Hear. Res., 147, 59–69 (2000).

    PubMed  Google Scholar 

  93. R. S. Petralia, Y.-X. Wang, H. M. Zhao, and R. J. Wenthold, “Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic and glial localizations in the dorsal cochlear nucleus,” J. Comp. Neurol., 372, 356–383 (1996).

    PubMed  Google Scholar 

  94. I. M. Purcell and A. A. Perachio, “Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulo-cerebellum,” J. Comp. Neurol., 433, 48–61 (2001).

    PubMed  Google Scholar 

  95. S. Ramon y Cajal, Histologie de Systeme Nerveux de l'Homme et des Vertebres, Maloine, Paris (1911), Vol. II.

    Google Scholar 

  96. A. Resibois and J. H. Rogers, “Calretinin in rat brain: an immuno-histochemical study,” Neurosci., 46, 101–134 (1992).

    Google Scholar 

  97. J. H. Rogers, “Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum,” Neurosci., 31, 711–721 (1989).

    Google Scholar 

  98. C. Rosenmund and G. L. Westbrook, “Calcium-induced actin depolymerization reduces NMDA channel activity,” Neuron, 10, 805–814 (1993).

    PubMed  Google Scholar 

  99. D. J. Rossi, S. Alford, E. Mugnaini, and N. T. Slater, “Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse,” J. Neurophysiol., 74, 24–42 (1995).

    PubMed  Google Scholar 

  100. S. I. Satake, F. Saitow, J. Yamada, and S. Konishi, “Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons,” Nat. Neurosci., 3, 551–558 (2000).

    PubMed  Google Scholar 

  101. G. M. Shepherd, “The dendritic spine: A multifunctional integrative unit,” J. Neurophysiol., 75, 2197–2210 (1996).

    PubMed  Google Scholar 

  102. N. T. Slater, D. J. Rossi, and G. A. Kinney, “Physiology of transmission at a giant glutamatergic synapse in cerebellum,” Prog. Brain Res., 114, 151–163 (1997).

    PubMed  Google Scholar 

  103. K. E. Sorra, J. C. Fiala, and K. M. Harris, “Critical assessment of the involvement of perforations, spinules and spine branching in hip-pocampal synapse formation,” J. Comp. Neurol., 398, 225–240 (1998).

    PubMed  Google Scholar 

  104. W. B. Spatz, “Unipolar brush cells in the cochlear nuclei of a primate,” Neurosci. Lett., 270, 141–144 (1999).

    PubMed  Google Scholar 

  105. W. B. Spatz, “Unipolar brush cells in marmoset cerebellum and cochlear nuclei express calbindin,” NeuroReport, 11, 1–4 (2000).

    PubMed  Google Scholar 

  106. W. B. Spatz, Unipolar brush cells in the human cochlear nuclei identified by their expression of a metabotropic glutamate receptor (mGluR2/3),” Neurosci. Lett., 316, 161–164 (2001).

    PubMed  Google Scholar 

  107. F. Sultan, “Distribution of mossy fibre rosettes in the cerebellum of cat and mice: evidence for a parasagittal organization at the single fibre level,” Eur. J. Neurosci., 13, 2123–2130 (2001).

    PubMed  Google Scholar 

  108. J. Takacs, Z. Borostyankoi, E. Veisenberger, et al., “Postnatal development of unipolar brush cells in the cerebellar cortex of cat,” J. Neurosci. Res., 61, 107–115 (2000).

    PubMed  Google Scholar 

  109. J. Takacs, L. Markova, Z. Borostyankoi, et al., “Metabotropic glutamate receptor type 1a expressing unipolar brush cells in the cerebellar cortex of different species: a comparative quantitative study,” J. Neurosci. Res., 55, 733–748 (1999).

    PubMed  Google Scholar 

  110. J. Voogd and M. Glickstein, “The anatomy of the cerebellum,” Trends Neurosci., 21, 370–375 (1998).

    PubMed  Google Scholar 

  111. D. B. Webster, “An overview of mammalian auditory pathways, with emphasis on humans,” in: The Mammalian Auditory Pathway: Neuroanatomy, Springer-Verlag, Berlin (1992), pp. 1–22.

    Google Scholar 

  112. D. L. Weedman, T. Pongstaporn, and D. K. Ryugo, “Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: mossy fiber endings and their targets,” J. Comp. Neurol., 369, 345–360 (1996).

    PubMed  Google Scholar 

  113. D. D. Wright, C. D. Blackstone, R. L. Huganir, and D. K. Ryugo, “Immunocytochemical localization of the mGluR1 alpha metabotropic glutamate receptor in the dorsal cochlear nucleus,” J. Comp. Neurol., 364, 729–745 (1996).

    PubMed  Google Scholar 

  114. D. D. Wright and D. K. Ryugo, “Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat,” J. Comp. Neurol., 365, 159–172.

  115. H. S. Wu, I. Sugihara, and Y. Shinoda, “Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei,” J. Comp. Neurol., 411, 97–118 (1999).

    PubMed  Google Scholar 

  116. X. X. Yan and L. J. Carey, “Calretinin immunoreactivity in the monkey and cat cerebellum: cellular localisation and modular distribution,” J. Hirnforsch., 37, 409–419 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinichenko, S.G., Okhotin, V.E. Unipolar Brush Cells – a New Type of Excitatory Interneuron in the Cerebellar Cortex and Cochlear Nuclei of the Brainstem. Neurosci Behav Physiol 35, 21–36 (2005). https://doi.org/10.1023/B:NEAB.0000049648.20702.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000049648.20702.ad

Navigation