Skip to main content
Log in

Long-Term Memory, Neurogenesis, and Signal Novelty

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

According to our suggested hypothesis, long-term memory is a collection of “gnostic units,” selectively tuned to past events. The formation of long-term memory occurs with the involvement of constantly appearing new neurons which differentiate from stem cells during the process of neurogenesis, in particular in adults. Conversion of precursor neurons into “gnostic units” selective in relation to ongoing events, supplemented by the involvement of hippocampal “novelty neurons,” which increase the flow of information needing to be fixed in long-term memory. “Gnostic units” form before the informational processes occurring in the ventral (“what?”) and dorsal (“where?”) systems. Formation of new “gnostic units” selectively tuned to a particular event results from the combination of excitation of the detector for stimulus characteristics and the novelty signal generated by “novelty neurons” in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. V. Anokhin, “Molecular scenarios for the consolidation of longterm memory,”; Zh. Vyssh. Nerv. Deyat., 47, No. 2, 261–279 (1997).

    Google Scholar 

  2. K. V. Anokhin, A. É. Ryabinin, and K. V. Sudakov, “Expression of the c-fos gene in mice during acquisition of defensive behavioral habits,”; Zh. Vyssh. Nerv. Deyat., 50, No. 8, 88–94 (2000).

    Google Scholar 

  3. O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  4. J. M. R. Delgado, Brain and Consciousness [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  5. A. R. Luriya, The Bases of Neuropsychology [in Russian], Moscow State University, Moscow (1973).

    Google Scholar 

  6. O. E. Svarnik, K. V. Anokhin, and Yu. I. Aleksandrov, “Distribution of behaviorally specialized neurons and the expression of the c-Fos transcription factor in the rat cerebral cortex during learning,”; Zh. Vyssh. Nerv. Deyat., 51, No. 6, 758–761 (2001).

    Google Scholar 

  7. E. N. Sokolov, "The question of gestalt in neurobiology, Zh. Vyssh. Nerv. Deyat., 46, No. 2, 229–240 (1996).

    Google Scholar 

  8. E. N. Sokolov, “Vector coding and neural maps,”; Zh. Vyssh. Nerv. Deyat., 46, No. 1, 7–13 (1996).

    Google Scholar 

  9. E. N. Sokolov, N. I. Nezlina, V. B. Polyanskii, and D. V. Evtikhin, “The orientation reflex: the 'aiming reaction' and the 'projector of attention,”; Zh. Vyssh. Nerv. Deyat., 51, No. 4, 421–437 (2001).

    Google Scholar 

  10. V. V. Sherstnev, “Neurochemical characterization of 'silent' neurons in the cortex of the brain,” Dokl. Akad. Nauk SSSR, 202, No. 6, 1473–1476 1972

    Google Scholar 

  11. J. Altman, “Are new neurons formed in the brains of adult mammals?” Science, 135, 1127–1128 (1962).

    Google Scholar 

  12. J. Altman, “Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis,” Exptl. Neurol., 16, No. 3, 263–278 (1966).

    Google Scholar 

  13. P. O. Bishop, “Neurophysiology of binocular single and stereopsis,” in: Handbook of Sensory Physiology. Central Processing of Visual Information, R. Jung (ed.), Springer-Verlag, Berlin, Heidelberg, New York (1973), Vol. 7/3, pp. 255–305.

    Google Scholar 

  14. J. M. Brezun and A. Daszuta, “Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats,” Neurosci., 89, No. 4, 999–1002 (1999).

    Google Scholar 

  15. H. A. Cameron and R. D. McKay, “Restoring production of hippocampal neurons in old age,” Nat. Neurosci., 2, No. 10, 894–897 (1999).

    Google Scholar 

  16. H. A. Cameron and R. D. McKay, “Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus,” J. Comp. Neurol., 435, No. 4, 406–417 (2001).

    Google Scholar 

  17. H. A. Cameron, C. S. Woolley, B. S. McEwen, and E. Gould, “Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat,” Neurosci., 56, No. 2, 337–344 (1993).

    Google Scholar 

  18. L. N. Chiang, I. M. Grenier, L. Ettwiller, et al., “An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis,” Proc. Natl. Acad. Sci. USA, 98, No. 5, 2815–2819 (2001).

    Google Scholar 

  19. J. M. Conner, M. A. Darracq, J. Roberts, and M. H. Tuszynski, “Nontropic action of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation,” Proc. Natl. Acad. Sci. USA, 98, No. 4, 1941–1946 (2001).

    Google Scholar 

  20. M. Cynader and D. Regan, “Neurons in cat parastriate cortex sensitive to the direction of motion in three-dimensional space,” J. Physiol. (London), 274, 549–569 (1978).

    Google Scholar 

  21. B. E. Derrick, A. D. York, and J. L. Martinez, Jr., “Increased granule cell neurogenesis in the adult dentate gyrus following mossy fiber stimulation sufficient to induce long-term potentiation,” Brain Res., 857, No. 1-2, 300–307 (2000).

    Google Scholar 

  22. A. Dosemeci, J. H. Tao-Cheng, L. Vinade, et al., “Glutamateinduced transient modification of the postsynaptic density,” Proc. Natl. Acad. Sci. USA, 98, No. 18, 10428–10432 (2001).

    Google Scholar 

  23. G. Edelman, Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York (1987).

    Google Scholar 

  24. P. S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, et al., “Neurogenesis in the adult hippocampus,” Nat. Med., 4, No. 11, 1313–1317 (1998).

    Google Scholar 

  25. R. Feng, C. Rampon, Y. P. Tang, et al., “Deficient neurogenesis in forebrain-specific Presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces,” Neuron, 32, No. 5, 911–926 (2001).

    Google Scholar 

  26. E. Fuchs, G. Flugge, F. Ohl, et al., “Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus,” Physiol. Behav., 73, No. 3, 285–291 (2001).

    Google Scholar 

  27. C. Gheusi, H. Cremer, H. McLean, et al., “Importance of newly generated neurons in the adult olfactory bulb for odor discrimination,” Proc. Natl. Acad. Sci. USA, 97, No. 4, 1823–1828 (2000).

    Google Scholar 

  28. S. A. Goldman, “Adult neurogenesis: from canaries to the clinic,” J. Neurobiol., 36, No. 2,267–268 (1998).

    Google Scholar 

  29. M. A. Goodale, “Different spaces and different times for perception and action,” Progr. Brain Res., 134, 313–331 (2001).

    Google Scholar 

  30. E. Gould, A. Beylin, P. Tanapat, et al., “Learning enhances adult neurogenesis in the hippocampal formation,” Nat. Neurosci., 2, No. 3, 260–265 (1999).

    Google Scholar 

  31. E. Gould, N. Vail, M. Wagers, and C. G. Gross, “Adult generated hippocampal and neocortical neurogenesis in macaques have a transient existence,” Proc. Natl. Acad. Sci. USA, 98, No. 19, 10910–10917 (2001).

    Google Scholar 

  32. P. P. C. Graciadei and J. A. Monti-Graciadei, “Regeneration in the olfactory system of vertebrates,” Ann. J. Otolaryngol., 4, No. 4, 228–233 (1983).

    Google Scholar 

  33. C. G. Gross, “Neurogenesis in the brain: death of a dogma,” Nat. Rev. Neurosci., 1, No. 1, 67–73 (2000).

    Google Scholar 

  34. F. H. Hubel and T. N. Wiesel, “Brain mechanisms of vision,” Sci. Am., 241, 130–144 (1979).

    Google Scholar 

  35. K. Jin, M. Minami, I. Q. Lan, et al., “Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat,” Proc. Natl. Acad. Sci. USA, 98, No. 8, 4711–4715 (2001).

    Google Scholar 

  36. C. Because. Johansson, S. Momma, D. L. Clarke, et al., “Identification of neural stem cells in the adult mammalian central nervous system,” Cell, 98, No. 1, 25–34 (1999).

    Google Scholar 

  37. M. S. Kaplan, “Neurogenesis in the 3-month-age rat visual cortex,” J. Comp. Neurol., 195, No. 2, 323–338 (1981).

    Google Scholar 

  38. G. Kempermann, E. P. Brandon, and F. N. Gage, “Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus,” Curr. Biol., 8, No. 16, 939–942 (1998).

    Google Scholar 

  39. G. Kempermann, H. G. Kuhn, and Family. H. Gage, “More hippocampal neurons in adult mice living in an enriched environment,” Nature (London), 386, No. 6624, 493–495 (1997).

    Google Scholar 

  40. G. Kempermann, H. van Praag, and F. H. Gage, “Activity-dependent regulation of neuronal plasticity and self repair,” Prog. Brain Res., 127, 35–48 (2000).

    Google Scholar 

  41. J. Konorski, Integrative Activity of the Brain: An Interdisciplinary Approach, Chicago University Press, Chicago (1967).

    Google Scholar 

  42. D. R. Kornack and P. Rakic, “The generation, migration, and differentiation of olfactory neurons in the adult primate brain,” Proc. Natl. Acad. Sci. USA, 98, 4752–4757 (2001).

    Google Scholar 

  43. F. S. Lee and M. V. Chao, “Activation of TrK neurotrophin receptors in the absence of neurotrophins,” Proc. Natl. Acad. Sci. USA, 98, No. 6, 3555–3560 (2001).

    Google Scholar 

  44. V. Lemaire, C. Aurousseau, M. le Moal, and D. N. Abrous, “Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis,” Eur. J. Neurosci., 11, No. 11, 4006–4014 (1999).

    Google Scholar 

  45. V. Lemaire, M. Koehl, M. le Moal, and D. N. Abrous, “Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus,” Proc. Natl. Acad. Sci. USA, 97, No. 20, 11032–11037 (2000).

    Google Scholar 

  46. J. P. Liu, K. Solway, R. O. Messing, and F. R. Sharp, “Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils,” J. Neurosci., 18, No. 19, 7768–7778 (1998).

    Google Scholar 

  47. C. Lopez-Garcia, A. Molowny, J. M. Garcia-Verdugo, and I. Ferrer, “Delayed postnatal neurogenesis in the cerebral cortex of lizards,” Brain Res., 471, 167–174 (1988).

    Google Scholar 

  48. M. B. Luskin, “Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate,” J. Neurobiol., 36, No. 2, 221–233 (1998).

    Google Scholar 

  49. B. S. McEwen, “Stress and hippocampal plasticity,” Ann. Rev. Neurosci., 22, 105–122 (1999).

    Google Scholar 

  50. B. S. McEwen, “The neurobiology of stress: from serendipity to clinical relevance,” Brain Res., 886, No. 1-2, 172–189 (2000).

    Google Scholar 

  51. D. E. McGuire and R. L. Davis, “Presenilin-1 and memories of the forebrain,” Neuron, 32, No. 5, 763–765 (2001).

    Google Scholar 

  52. R. McKay, “Stem cells in the central nervous system” Science, 276, No. 5309, 66–71 (1997).

    Google Scholar 

  53. S. E. McKay, A. L. Pursell, and T. J. Carew, “Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning,” Learn. Mem., 6, No. 3, 193–215 (1999).

    Google Scholar 

  54. A. Messinger, L. R. Squire, S. M. Zola, and T. D. Albright, “Neuronal representations of stimulation associations develop in the temporal lobe during learning,” Proc. Natl. Acad. Sci. USA, 98, No. 21, 12239–12244 (2001).

    Google Scholar 

  55. Y. Miyashita, K. Sakai, S.-I. Higuchi, and N. Masui, “Localization of primal long-term memory in the primate temporal cortex,” in: Memory: Organization and Locus of Change, L. R. Squire et al. (eds.), Oxford University Press, New York, Oxford (1991), pp. 239–249.

    Google Scholar 

  56. Y. Naya, M. Yoshida, and Y. Miyashita, “Backward spreading of memory-retrieval signal in the primate temporal cortex,” Science, 291, No. 5504, 661–664 (2001).

    Google Scholar 

  57. M. Nilsson, E. Perfilieva, U. Johansson, et al., “Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory,” J. Neurobiol., 39, No. 4, 569–578 (1999).

    Google Scholar 

  58. N. A. O'Rourke, “Neuronal chain gangs: homotypic contacts support migration into the olfactory bulb,” Neuron, 16, 1061–1064 (1996).

    Google Scholar 

  59. W. Penfield and Th. Rasmussen, The Cerebral Cortex of Man, Macmillan, New York (1950).

    Google Scholar 

  60. S. Pollmann and D. Y. von Cramon, “Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI,” Exptl. Brain Res., 133, No. 1, 12–22 (2000).

    Google Scholar 

  61. H. van Praag, B. R. Christie, T. J. Sejnowski, and F. H. Gage, “Running enhances neurogenesis, learning, and long-term potentiation in mice,” Proc. Natl. Acad. Sci. USA, 96, No. 23, 13427–13431 (1999).

    Google Scholar 

  62. H. van Praag, A. F. Schinder, B. R. Christie, et al., “Functional neurogenesis in the adult hippocampus,” Nature, 415, No. 6875, 1030–1034 (2002).

    Google Scholar 

  63. A. Privat and C. P. Leblond, “The subependymal layer and neighboring reaction in the brain of the young rat,”J. Comp. Neurol., 146, No. 3, 277–302 (1972).

    Google Scholar 

  64. S. C. Rao, G. Rainer, and E. K. Miller, “Integration of what and where in the primate prefrontal cortex,” Science, 276, No. 5313, 821–824 (1997).

    Google Scholar 

  65. E. T. Rolls, “Memory systems in the brain,” Ann. Rev. Psychol., 51, 599–630 (2000).

    Google Scholar 

  66. S. Rose, The Making of Memory from Molecules to Mind, Bantam Press, London, New York, Toronto, Sidney, Auckland (1992) (Russian translation from English: Mir, Moscow (1995)).

    Google Scholar 

  67. C. Scharff, “Chasing fate and function of new neurons in adult brains,” Curr. Opin. Neurobiol., 10, No. 6, 774–783 (2000).

    Google Scholar 

  68. G. E. Schneiger, “Two visual systems,” Science, 163, No. 3870, 895–902 (1969).

    Google Scholar 

  69. B. W. Scott, J. M. Wojtowicz, and W. M. Burnham, “Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures,” Exptl. Neurol., 165, No. 2, 231–236 (2000).

    Google Scholar 

  70. B. J. Shiasson, V. Tropepe, C. M. Morshead, and D. van der Kooy, “Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neuronal stem cell characteristics,” J. Neurosci., 19, No. 11, 4462–4471 (1999).

    Google Scholar 

  71. T. J. Shors, G. Miesegaes, A. Beylin, et al., “Neurogenesis in the adult is involved in the formation of trace memories,” Nature, 410, No. 6826, 372–376 (2001).

    Google Scholar 

  72. J. S. Snyder, N. Kee, and J. M. Woitowich, “Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus,” J. Neurophysiol., 85, No. 6, 2423–2431 (2001).

    Google Scholar 

  73. H. J. Song, and M. M. Poo, “Signal transduction underlying growth cone guidance by diffusible factors,” Curr. Opin. Neurobiol., 9, No. 3, 355–363 (1999).

    Google Scholar 

  74. L. R. Squire, “The neuropsychology of human memory,” Ann. Rev. Neurosci., 5, 241–273 (1987).

    Google Scholar 

  75. S. Temple and A. Alvarez-Buylla, “Stem cells in the adult mammalian central nervous system” Curr. Opin. Neurobiol., 9, 135–141 (1999).

    Google Scholar 

  76. H. Tomasiewicz, K. Ono, D. Yee, et al., “Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system” Neuron, 11, 1163–1174 (1993).

    Google Scholar 

  77. E. Tulving, “Concepts of human memory,” in: Memory Organization and Locus of Change, L. R. Squire, et al. (eds.), Oxford University Press, New York (1991), pp. 3–32.

    Google Scholar 

  78. L. G. Underleider and M. Mishkin, “Two cortical visual systems,” in: Analysis of Visual Behavior, D. I. Ingle, M. A. Goodale, and R. J. Mansfield (eds.), MIT Press, Cambridge, MA (1982), pp. 549–586.

    Google Scholar 

  79. B. M. Williams, Y. Luo, C. Ward, et al., “Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity,” Physiol. Behav., 73, No. 4, 649–658 (2001).

    Google Scholar 

  80. E. J. Yang, Y. S. Ahn, and K. C. Chung, “Protein kinase Dyrk 1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells,” J. Biol. Chem., 276, No. 43, 39819–39824 (2001).

    Google Scholar 

  81. S. Yoshimura, Y. Takagai, I. Harada, et al., “FGF regulation of neurogenesis in adult hippocampus after brain injury,” Proc. Natl. Acad. Sci. USA, 98, No. 10, 5874–5879 (2001).

    Google Scholar 

  82. G. M. Young and S. W. Levison, “Persistence of multipotential progenitors in the juvenile rat subventricular zone,” Devl. Neurosci., 18, No. 4, 255–256 (1996).

    Google Scholar 

  83. D. Young, P. A. Lawlor, P. Leone, et al., “Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective,” Nat. Med., 5, No. 4, 448–453 (1999).

    Google Scholar 

  84. S. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neurosci., 9, No. 4, 767–781 (1983).

    Google Scholar 

  85. S. Zeki, “Localization and globalization in conscious vision,” Ann. Rev. Neurosci., 24, 57–86 (2001).

    Google Scholar 

  86. S. C. Zhang, B. Ge, and I. D. Duncan, “Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity,” Proc. Natl. Acad. Sci. USA, 96, No. 7, 4089–4094 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, E.N., Nezlina, N.I. Long-Term Memory, Neurogenesis, and Signal Novelty. Neurosci Behav Physiol 34, 847–857 (2004). https://doi.org/10.1023/B:NEAB.0000038138.75801.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000038138.75801.85

Navigation