Skip to main content
Log in

Structural Organization of the Amygdaloid Complex of the Rat Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The amygdaloid complex, traditionally regarded as part of the system of basal endbrain nuclei, has a unique structure in that it combines the two major principles of organization of the gray matter – the nuclear and the screening. Working from the studies of Zavarzin on the nuclear and screening centers, the authors suggest a classification of its structures into nuclei, paleocortex, and intermediate formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. É. Sh. Airapet'yants and T. S. Sotnichenko, The Limbic System [in Russian], Nauka, Leningrad (1967).

    Google Scholar 

  2. I. G. Akmaev and L. B. Kalimullina, The Amygdaloid Complex of the Brain: Functional Morphology and Neuroendocrinology [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  3. A. A. Zavarzin, Studies on the Theory of Parallelism in the Evolutionary Dynamics of Tissues [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  4. R. Yu. Il'yuchenok, M. A. Gilinskii, L. V. Loskutov, N. I. Dubrovina, and N. V. Vol'f, The Amygdaloid Complex: Connections, Behavior, and Memory [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  5. L. B. Kalimullina and Z. A. Kalkamanov, Position of Image Recognition Theory in the Practice of Morphological Studies [in Russian], Deposited in the All-Russian Institute of Scientific and Technical Information (VINITI), No. 4961-B89, 24.7.89, Moscow (1989).

  6. A. V. Karpova and L. B. Kalimullina, Structural-Functional Organization of the Cortical Nucleus of the Amygdaloid Complex of the Brain [in Russian], Bashkir State University, Ufa (2001).

    Google Scholar 

  7. I. N. Filimonov, Selected Works [in Russian], Meditsina, Moscow (1974).

    Google Scholar 

  8. S. A. Chepurnov and N. E. Chepurnova, The Amygdaloid Complex of the Brain [in Russian], Moscow State University Press, Moscow (1981).

    Google Scholar 

  9. V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior [in Russian], Nauka, St. Petersburg (2001).

    Google Scholar 

  10. M. T. Alkire, A. Vazdarjanova, H. Dickinson-Anson, N. S. White, and L. Cahill, “Lesions of the basolateral amygdala complex block propofol-induced amnesia for inhibitory avoidance learning in rats,” Anesthesiol., 95,No. 3, 708–715 (2001).

    Google Scholar 

  11. D. G. Amaral, R. B. Veazy, and W. M. Cowan, “Some observations on hypothalamo-amygdaloid connections in the monkey,” Brain Res., 252,No. 1, 13–27 (1982).

    Google Scholar 

  12. L. Brothers, B. Ring, and A. Kling, “Response of neurons in the macaque amygdala to complex social stimuli,” Behav. Brain Res., 41,No. 3, 199–213 (1990).

    Google Scholar 

  13. D. P. Cain, S. G. Grant, D. Saucier, E. L. Hargreaves, and E. R. Kandel, “Fyn tyrosine kinase is required for normal amygdala kindling,” Epilepsy Res., 22,No. 2, 107–114 (1995).

    Google Scholar 

  14. M. Davis, The role of the Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction, J. P. Aggletov (ed.), Wiley-Liss, New York (1992).

    Google Scholar 

  15. E. S. Faber, R. J. Callister, and P. Sah, “Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro,” J. Neurophysiol., 85,No. 2, 714–723 (2001).

    Google Scholar 

  16. G. S. Geis and R. D. Wurster, “Horseradish peroxidase localization of cardiac vagal preganglionic somata,” Brain Res., 182,No. 1, 19–30 (1980).

    Google Scholar 

  17. K. A. Goosens and S. Maren, “Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats,” Learn. Mem., 8,No. 3, 148–155 (2001).

    Google Scholar 

  18. M. Heling, “Antisense inhibition of neuropeptide Y (NPY) receptor expression blocks anxiolytic-like action of NPY in amygdala and paradoxically increases feeding,” Regul. Pept., 59,No. 2 201–205 (1995).

    Google Scholar 

  19. B. R. Kaada, “Stimulation and regional ablation of the amygdaloid complex with reference to functional representations,” in: Neurobiology of the Amygdala, B. E. Eleftheriou (ed.), Plenum Press, New York (1972).

    Google Scholar 

  20. I. E. Krettek and I. L. Price, “Projections from amygdaloid complex to the cerebral cortex and thalamus in the rat and cat,” J. Comp. Neurol., 172,No. 4, 687–722 (1977).

    Google Scholar 

  21. M. P. Laakso, K. Partanen, M. Lehtovirta, M. Hallicainen, T. Hynninen, P. Vainio, P. Rikkinen, Sr., and H. Soininen, “MRI of amygdala fails to diagnose early Alzheimer's disease,” Neuroreport, 27,No. 6, 2414–2428 (1995).

    Google Scholar 

  22. P. D. McLean, “The limbic system: visceral brain and emotional behaviour,” Arch. Neurol. Psychiatr., 73,No. 2, 130–134 (1955).

    Google Scholar 

  23. The Amygdala: Structure, Function, Sex Dimorphism: Collection of Articles, Bashkir State University Press, Ufa (1995).

  24. B. I. Morgado, G. M. Torras, and C. I. Portell, “The amygdaloid body: functional implications,” Rev. Neurol., 33,No. 5, 471–477 (2001).

    Google Scholar 

  25. G. M. Murphy, Jr. and W. G. Ellis, “The amygdala in Down's syndrome and familial Alzheimer's disease: four clinicopathological case reports,” Biol. Psychiatry, 30,No. 1, 92–106 (1991).

    Google Scholar 

  26. L. Nitecka and M. Frotscher, “Interconnections of GABAergic and cholinergic elements in the rat amygdaloid nuclei: single-and double-immunolabeling studies,” Biol. Psychiatry, 279,No. 3, 470–488 (1989).

    Google Scholar 

  27. T. Ono, H. Nishijo, and T. Uwano, “Amygdala role in conditioned associative learning,” Prog. Neurobiol., 46,No. 4, 401–422 (1995).

    Google Scholar 

  28. R. M. Pigache, “The anatomy of ‘paleocortex.’ A critical review,” Adv. Anat. Embryol. Cell Biol., 43,No. 6, 1–62 (1970).

    Google Scholar 

  29. J. Raber and F. E. Bloom, “IL-2 regulates vasopressin release from the hypothalamus and the amygdala: role of nitric oxide-mediated signaling,” J. Neurosci., 14,No. 10, 6187–6195 (1994).

    Google Scholar 

  30. J. Raber, G. F. Koob, and F. E. Bloom, “Interleukin-2 induces corticotropin-releasing factor release from the amygdala, and involves a nitric oxide-mediated signaling: comparison with the hypothalamic response,” Pharmacol. Exptl. Ther., 272,No. 2, 815–824 (1995).

    Google Scholar 

  31. M. E. Ragozzino and P. E,. Gold, “Task-dependent effects of intra-amygdalar morphine injections: attenuation by intra-amygdalar glucose injections,” Neurosci., 14,No. 12, 78–85 (1994).

    Google Scholar 

  32. J. C. Repa, J. Muller, J. Apergis, T. M. Desrochers, Y. Zhoui, and L. E. Le Doux, “Two different lateral amygdalar cell populations contribute to the initiation and storage of memory,” Nat. Neurosci., 4,No. 7, 724–731 (2001).

    Google Scholar 

  33. S. K. Sanders and A. Shekhar, “Regulation of anxiety by GABA-receptors in the amygdala,” Pharmacol. Biochem. Behav., 52,No. 4, 701–706 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalimullina, L.B., Akhmadeev, A.V., Minibaeva, Z.R. et al. Structural Organization of the Amygdaloid Complex of the Rat Brain. Neurosci Behav Physiol 34, 551–555 (2004). https://doi.org/10.1023/B:NEAB.0000028283.55130.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000028283.55130.69

Navigation