Skip to main content
Log in

Effects of Thyroliberin on Membrane Potential and the Pattern of Spontaneous Activity of Neurons in the Respiratory Center in in Vitro Studies in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Patch-clamp experiments on transverse brainstem slices from rats were performed to study the effects of thyroliberin (10–8 M) on the membrane potential and spontaneous activity of neurons in two areas of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Botzinger complex. Thyroliberin induced membrane depolarization of neurons in the respiratory center and increased their spike activity. The pattern of activity of neurons in the pre-Botzinger complex showed decreases in the time intervals between the beginnings of bursts in response to thyroliberin. In some cases, thyroliberin led to the appearance of spike activity in initially “silent” neurons; “silent” neurons in the solitary tract nucleus became tonically active, while those in the pre-Botzinger complex showed burst activity. These results provide evidence for the existence of an indirect regulatory influence for thyroliberin on respiratory center neurons, operating at the membrane level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Inyushkin and N. A. Merkulova, “The effects of microinjections of thyroliberin into the area of the solitary tract nucleus on respiratory and circulatory parameters,” Ros. Fiziol. Zh. im. I. M. Sechenova, 79,No. 11, 52–58 (1993).

    Google Scholar 

  2. A. N. Inyushkin, N. A. Merkulova, and S. A. Chepurnov, “The pre-Botzinger complex is involved in mediating the respiratory effects of thyroliberin,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84,No. 4, 285–292 (1998).

    Google Scholar 

  3. B. Ya. Peskov and A. N. Inyushkin, “Respiratory responses during the action of thyroliberin on the ventral surface of the medulla oblongata,” Fiziol. Zh. SSSR, 76,No. 5, 637–643 (1990).

    Google Scholar 

  4. D. A. Bayliss, F. Viana, R. Kanter, C. I. Szymeczek-Seay, A. J. Berger, and D. E. Millhorn, “Early postnatal development of thyrotropin-releasing hormone (TRH) expression, TRH receptor binding and TRH responses in neurons of rat brainstem,” J. Neurosci., 14,No. 2, 821–833 (1994).

    Google Scholar 

  5. M. C. Bellingham, “Driving respiration. The respiratory central pattern generator,” Clin. Exptl. Pharmacol. Physiol., 25,No. 10, 847–856 (1998).

    Google Scholar 

  6. A. C. Bonham and D. R. McCrimmon, “Neurones in a discrete region of the nucleus tractus solitarius are required for the Breuer-Hering reflex in rat,” J. Physiol. (London), 427, 261–280 (1990).

    Google Scholar 

  7. S. A. Chepurnov and A. N. Inyushkin, “Respiratory effects of TRH microinjections into the nucleus tractus solitarii,” Neuropeptides, 26,Suppl. 1, 27 (1994).

    Google Scholar 

  8. C. L. Cream, A. Li, and E. E. Nattie, “TRH causes prolonged respiratory stimulation,” J. Appl. Physiol., 83,No. 3, 792–799 (1997).

    Google Scholar 

  9. D. de Castro, J. Lipski, and R. Kanjhan, “Electrophysiological study of dorsal respiratory neurons in the medulla oblongata of the rat,” Brain Res., 639, 49–56 (1994).

    Google Scholar 

  10. M. S. Dekin, G. B. Richerson, and P. A. Getting, “Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius,” Science, 229, 67–69 (1985).

    Google Scholar 

  11. C. A. del Negro, S. M. Johnson, R. J. Butera, and J. C. Smith, “Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions,” J. Neurophysiol., 86,No. 1, 59–74 (2001).

    Google Scholar 

  12. H. U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurones in living brain slices by infrared DIC-videomicroscopy,” Brain Res., 537, 333–336 (1990).

    Google Scholar 

  13. G. Funk, M. A. Parkis, S. R. Selvaratnam, and C. Walsh, “Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons,” Respirat. Physiol., 110, 125–137 (1997).

    Google Scholar 

  14. J. Greer, Z. Al-Zubaidu, and J. E. Carter, “Thyrotropin-releasing hormone stimulates potential rat respiration in vitro,” Amer. J. Physiol., 271, R1160–R1164 (1996).

    Google Scholar 

  15. G. Hilaire and B. Duron, “Maturation of the mammalian respiratory system,” Physiol. Rev., 79,No. 2, 325–360 (1999).

    Google Scholar 

  16. A. N. Inyushkin and S. A. Chepurnov, “Central respiratory effects of TRH in ultra-low doses,” Neuropeptides, 24, 216 (1993).

    Google Scholar 

  17. S. M. Johnson, N. Koshiya, and J. C. Smith, “Isolation of the kernel for respiratory rhythm generation in a novel preparation. The pre-Botzinger complex ‘island’,” J. Neurophysiol., 85, neuron 4, 1772–1776 (2001).

    Google Scholar 

  18. N. Koshiya and J. C. Smith, “Neuronal pacemaker for breathing visualized in vitro,” Nature, 400,No. 6742, 360–363 (1999).

    Google Scholar 

  19. R. Lechan and R. Toni, “Thyrotropin-releasing hormone neuronal systems in the central nervous system,” in: Neuroendocrinology, CRC Press, London (1992), pp. 279–330.

    Google Scholar 

  20. R. B. Lunn, M. S. Kreider, and R. R. Miselis, “Thyrotropin-releasing hormone projections to the dorsal motor nucleus and the nucleus of the solitary tract of the rat,” J. Comp. Neurol., 311, 271–288 (1991).

    Google Scholar 

  21. R. A. Mueller, A. C. Towle, and G. R. Breese, “Supersensitivity to the respiratory stimulatory effect of TRH in 5,7-dihydroxytryptamine treated rats,” Brain Res., 298, 370–373 (1984).

    Google Scholar 

  22. J.-M. Ramirez and D. W. Richter, “The neuronal mechanisms of respiratory rhythm generation,” Curr. Opin. Neurobiol., 6, 817–825 (1996).

    Google Scholar 

  23. J. C. Reckling, J. Champagnat, and M. Denavit-Saubie, “Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brainstem in vitro,” J. Neurophysiol., 75,No. 2, 811–819 (1996).

    Google Scholar 

  24. J. C. Smith, R. J. Butera, N. Koshiya, C. Del Negro, C. G. Wilson, and S. M. Johnson, “Respiratory rhythm generation in neonatal and adult mammals. The hybrid pacemaker-network model,” Respirat. Physiol., 122, 131–147 (2000).

    Google Scholar 

  25. H. Sontheimer, “Whole-cell patch-clamp recordings,” in: Patch-Clamp Applications and Protocols, Humana Press, Totowa (1995), pp. 37–73.

    Google Scholar 

  26. Q.-J. Sun, P. Pilowsky, and I. J. Llewellyn-Smith, “Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in rat nucleus ambiguus,” J. Comp. Neurol., 362, 320–330 (1995).

    Google Scholar 

  27. M. Thoby-Brisson and J. M. Ramirez, “Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice, J. Neurophysiol., 86,No. 1, 104–112 (2001).

    Google Scholar 

  28. W. Wang, J. K. Tiwari, S. R. Bradley, R. V. Zaykin, and G. B. Richerson, “Acidosis-stimulated neurons of the medullary raphe are serotonergic,” J. Neurophysiol., 85,No. 5, 2224–2235 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inyushkin, A.N. Effects of Thyroliberin on Membrane Potential and the Pattern of Spontaneous Activity of Neurons in the Respiratory Center in in Vitro Studies in Rats. Neurosci Behav Physiol 34, 445–451 (2004). https://doi.org/10.1023/B:NEAB.0000022628.63964.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000022628.63964.5c

Navigation