Skip to main content
Log in

Possible Mechanisms of Involvement of the Amygdaloid Complex in the Control of Gastric Motor Function

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Electrophysiological and neuroanatomical experiments on Wistar rats were performed to study the mechanisms of the modulatory influences of the amygdaloid nuclei on reflex motor activity in the stomach. Electrical stimulation of the central nucleus was accompanied by reproducible changes in the ongoing motor activity of the stomach in activity evoked by activation of the vagovagal reflex arc. The most marked, and predominantly inhibitory, effects were seen in response to stimulation of the medial part of the nucleus. Microinjections of the anterograde neuron marker Phaseolus vulgaris leucoagglutinin (PHA-L) into the central nucleus of the amygdala revealed the existence of direct descending projections from its dorsomedial part to the area containing cells of the vagosolitary complex, associated with performance of the vagovagal reflexes of the stomach. Electrical stimulation of this part of the central nucleus led to changes in neuron responses in the bulbar “gastric” center evoked by stimulation of the vagus nerve. These features may underlie one of the mechanisms of the amygdalar modulation of the reflex activity of the stomach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Bagaev, O. A. Lyubashina, and S. S. Panteleev, “Bulbar mechanisms of performance of the bulbovagal reflex,” Arkh. Klin. Éksperim. Med., 9,No. 1, 25–28 (2000).

    Google Scholar 

  2. V. A. Bagaev, A. D. Nozdrachev, and S. S. Panteleev, The Vagovagal Reflex Arc. Elements of Its Structural-Functional Organization [in Russian], St. Petersburg University Press, St. Petersburg (1997).

    Google Scholar 

  3. O. G. Baklavadzhyan, N. L. Pogosyan, A. V. Arshakyan, A. G. Darbinyan, A. V. Khachatryan, and T. G. Nikogosyan, “Studies of the role of the central nucleus of the amygdala in the control of cardiovascular functions,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84,No. 12, 1370–1375 (1998).

    Google Scholar 

  4. Z. A. Dobrovol'skaya, “Interactions of the hypothalamus and amygdaloid complex in the regulation of digestive tract motor function,” Ros. Fiziol. Zh. im. I. M. Sechenova, 70,No. 6, 753–760 (1984).

    Google Scholar 

  5. S. M. Altschuler, X. M. Bao, D. Bieger, D. A. Hopkins, and R. R. Miselis, “Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts,” J. Comp. Neurol., 283, 248–268 (1989).

    Google Scholar 

  6. C. Baumgartner, S. Lurger, and F. Leutmezer, “Autonomic symptoms during epileptic seizures,” Epileptic Disorders, 3,No. 3, 103–116 (2001).

    Google Scholar 

  7. E. E. Benarroch, “The central autonomic network: functional organization, dysfunction, and perspective,” Mayo Clin. Proc., 68,No. 10, 988–1001 (1993).

    Google Scholar 

  8. D. F. Cechetto, “Experimental cerebral ischemic lesions and autonomic and cardiac effects in cats and rats,” Stroke, 24,No. 12, 16–19 (1993).

    Google Scholar 

  9. C. A. Cuenod, A. Denys, J. L. Michot, P. Jehenson, F. Forette, D. Kaplan, A. Syrota, and F. Boller, “Amygdala atrophy in Alzheimer's disease. An in vivo magnetic resonance imaging study,” Arch. Neurol., 50,No. 9, 941–945 (1993).

    Google Scholar 

  10. E. H. Danielson, D. J. Magnuson, and T. S. Gray, “The central amygdaloid nucleus innervation of the dorsal vagal complex in rat: A Phaseolus vulgaris leucoagglutinin lectin anterograde tracing study,” Brit. Res. Bull., 22, 705–715 (1989).

    Google Scholar 

  11. J. S. Davison and D. Grundy, An Electrophysiological Investigation of Vagovagal Reflexes. Gastrointestinal Motility, Raven Press, New York (1980).

    Google Scholar 

  12. F. M. Fennegan and M. J. Puiggari, “Hypothalamic and amygdaloid influence on gastric motility in dogs,” J. Neurosurg., 24,No. 2, 497–504 (1966).

    Google Scholar 

  13. C. R. Gerfen and P. E. Sawchenko, “An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L),” Brain Res., 29, 219–238 (1984).

    Google Scholar 

  14. R. M. Harper, R. C. Frysinger, R. B. Trelease, and J. D. Marks, “State-dependent alteration of respiratory cycle timing by stimulation of the central nucleus of the amygdala,” Brain Res., 306, 1–8 (1984).

    Google Scholar 

  15. S. M. Hilton, “The defence-arousal system and its relevance for circulatory and respiratory control,” J. Exptl. Biol., 100, 159–174 (1982).

    Google Scholar 

  16. D. A. Hopkins and G. Holstege, “Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat,” Exptl. Brain Res., 3, 529–547 (1978).

    Google Scholar 

  17. B. R. Koada, “Stimulation and regional ablation of the amygdaloid complex with reference to functional representations,” in: Neurobiology of the Amygdala, Plenum Press, New York (1972), pp. 205–281.

    Google Scholar 

  18. J. E. LeDoux, “Brain mechanisms of emotion and emotional learning,” Curr. Opin. Neurobiol., 2,No. 2, 191–197 (1992).

    Google Scholar 

  19. D. Liubashina, E. Jolkkonen, and A. Pitkanen, “Projections from the central nucleus of the amygdala to the gastric related area of the dorsal vagal complex: a Phaseolus vulgaris-leucoagglutinin study in rat,” Neurosci. Lett., 291,No. 2, 85–88 (2000).

    Google Scholar 

  20. M. Martina, S. Royer, and D. Pare, “Physiological properties of central medial and central lateral amygdala neurons,” J. Neurophysiol., 82,No. 4, 1843–1854 (1999).

    Google Scholar 

  21. R. R. Miselis, L. Rinaman, S. M. Altshuler, X. Bao, and R. B. Lynn, “Medullary viscerotopic representation of the alimentary canal innervation in rat,” in: Brain-Gut Interactions, Boston (1990), pp. 3–22.

  22. H. Nishimura, “Effects of hypothalamic and amygdaloid stimuli on activity of neurones in the dorsal motor nucleus of the vagal nerve,” Fucuoca Acta Med., 78, 22–38 (1987).

    Google Scholar 

  23. G. Paxinos and C. Watson, The Rat Brain Stem in Stereotaxic Coordinates, Academic Press, Sidney (1982).

    Google Scholar 

  24. T. Petrov, J. H. Jhamandas, and T. L. Krukoff, “Connectivity between brainstem autonomic structures and expression of c-fos following electrical stimulation of the central nucleus of the amygdala,” Cell Tiss. Res., 283, 367–374 (1996).

    Google Scholar 

  25. V. M. Pickel, E. J. van Bockstaele, J. Chan, and D. M. Cestari, “Amygdala efferents form inhibitory-type synapses with a subpopulation of catecholaminergic neurons in the rat nucleus tractus solitarius,” J. Comp. Neurol., 362, 510–523 (1995).

    Google Scholar 

  26. A. Pitkanen, “Connectivity of the rat amygdaloid complex,” in: The Amygdala: A Functional Analysis, Oxford University Press (2000).

  27. A. Pitkanen, J. Tuunanen, R. Kalviainen, K. Partanen, and T. Salmenpera, “Amygdala damage in experimental and human temporal lobe epilepsy,” Epilepsy Res., 32,No. 1–2, 233–253 (1998).

    Google Scholar 

  28. G. W. Roberts, “Neuropeptides. Cellular morphology, major pathways, and functional considerations,” in Amygdala: Neurobiological Aspects of Emotion, Memory and Dysfunction, Wiley-Liss, New York (1992), pp. 115–142.

    Google Scholar 

  29. R. C. Rogers and D. L. Fryman, “Direct connections between the central nucleus of the amygdala and the nucleus of the solitary tract: an electrophysiological study in the rat,” J. Auton. Nerv. Syst., 22,No. 1, 83–87 (1988).

    Google Scholar 

  30. S. Saha, T. F. C. Batten, and Z. Henderson, “A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study,” Neurosci., 99,No. 4, 613–626 (2000).

    Google Scholar 

  31. Y. Takeuchi, S. Matsushima, R. Matsushima, and D. A. Hopkins, “Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat,” Brain Res., 280, 143–147 (1983).

    Google Scholar 

  32. R. L. Thompson and M. D. Cassell, “Differential distribution and non-collateralization of central amygdaloid neurons projecting to different medullary regions,” Neurosci. Lett., 97,No. 3, 245–251 (1989).

    Google Scholar 

  33. D. Van der Kooy, L. Y. Koda, J. F. McGinty, C. R. Gerfen, and F. E. Bloom, “The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat,” J. Comp. Neurol., 224, 1–24 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubashina, O.A. Possible Mechanisms of Involvement of the Amygdaloid Complex in the Control of Gastric Motor Function. Neurosci Behav Physiol 34, 379–388 (2004). https://doi.org/10.1023/B:NEAB.0000018750.65372.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000018750.65372.18

Navigation