Skip to main content
Log in

Genetic Determination of Neurophysiological Mechanisms of Cortical-Subcortical Integration of Bioelectrical Brain Activity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The contribution of genetic factors to the formation of the neurophysiological mechanisms of cortical-subcortical integration was studied in 12 pairs of monozygotic and five pairs of dizygotic twins (aged 18–25 years). Intrapair similarity of the nature of spatial interactions between bioelectrical activity in the cerebral cortex, assessed from different combinations of statistical interactions of EEG from 16 monopolar recordings, was assessed in each pair of twins (and among 544 non-related pairs of subjects in both groups). The results suggest a high level of general population invariance and relatively small inherited and phenotypic variability in the morphofunctional systems making up the major neurophysiological mechanisms of brain integration as a whole. The ontogenetic formation of stem and subcortical regulatory structures, which have a leading role in the systems combination of different parts of the brain into a single formation, appears to occur in all individuals by the same principle, as disturbance can apparently affect the fundamental monomorphic features of the species. In turn, we might expect to find large interindividual variability in the establishment of interregional connections of the neocortex, the role of inherited and environmental factors being different in the processes forming long and relatively short intercortical interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Adrianov, Organizational Principles of Integrative Brain Activity [in Russian], Meditsina, Moscow (1976).

    Google Scholar 

  2. O. S. Adrianov, “Brain architecture and the individuality of personality (identification of questions),” Usp. Fiziol. Nauk., 4,No. 3, 25–39 (1993).

    Google Scholar 

  3. A. P. Anokhin, “Genetic bases of the neurophysiological characteristics of humans,” in: Advances in Contemporary Genetics [in Russian], Nauka, Moscow (1987), pp. 206–231.

    Google Scholar 

  4. A. S. Batuev, Higher Integrative Systems of the Brain [in Russian], Nauka, Leningrad (1981).

    Google Scholar 

  5. S. B. Dzugaeva, Systems Genesis of the Conducting Pathways in the Human Brain. Systems Genesis and Questions in Brain Genetics [in Russian], Nauka, Moscow (1983), pp. 102–116.

    Google Scholar 

  6. M. Zhambyu, Hierarchical Cluster Analysis and Correspondence [in Russian], Finansy i Statistika, Moscow (1988).

    Google Scholar 

  7. E. I. Mukhin, Structural-Functional and Psychological Bases of Complex Forms of Behavior [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  8. I. V. Ravich-Shcherbo, T. M. Maryutina, and E. P. Grigor'eva, Psychogenetics [in Russian], Aspekt Press, Moscow (1999).

    Google Scholar 

  9. N. E. Sviderskaya and T. A. Korol'kova “Genetic features of the spatial organization of the electrical activity of the human cerebral cortex,” Zh. Vyssh. Nerv. Deyat., 44,No. 4–5, 640–649 (1994).

    Google Scholar 

  10. V. B. Tolkunov, The Striatum and Sensory Specialization of Neural Networks [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  11. F. Fogel' and A. Motul'skii, Human Genetics [Russian translation], Mir, Moscow (1990), p. 3.

    Google Scholar 

  12. G. Kharman, Contemporary Factor Analysis [in Russian], Statistika, Moscow (1972).

    Google Scholar 

  13. M. N. Tsitseroshin and A. A. Pogosyan, “Manifestations of the activity of brain integrative mechanisms and brain bioelectrical activity,” Biofizika, 38,No. 2, 344–350 (1993).

    Google Scholar 

  14. Yu. G. Shevchenko, Development of the Human Cortex in the Light of Onto-Phylogenetic Relationships [in Russian], Meditsina, Moscow (1972).

    Google Scholar 

  15. A. N. Shepoval'nikov and M. N. Tsitseroshin, “Spatial ordering of the functional organization of the whole brain,” Fiziol. Cheloveka, 13,No. 5, 892–909 (1987).

    Google Scholar 

  16. A. N. Shepoval'nikov, M. N. Tsitseroshin, and N. V. Levinchenko, “‘Age minimization’ of brain regions involved in the systems support of mental functions: arguments for and against,” Fiziol. Cheloveka, 17,No. 5, 28–49 (1991).

    Google Scholar 

  17. A. N. Shepoval'nikov, M. N. Tsitseroshin, and A. A. Pogosyan, “The role of different zones of the cortex and their connections in forming the spatial organization of the brain biopotentials field in postnatal ontogenesis,” Fiziol. Cheloveka, 23,No. 2, 1–13 (1997).

    Google Scholar 

  18. A. N. Shepoval'nikov and M. N. Tsitseroshin, “Evolutionary aspects of the establishment of human brain integrative activity,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85,No. 9–10, 1187–1207 (1999).

    Google Scholar 

  19. A. N. Shepoval'nikov and M. N. Tsitseroshin, “Involvement of three orthogonal integration systems in supporting whole brain activity,” in: Proceedings of the XVIII Congress of the I. P. Pavlov Physiological Society, Kazan' [in Russian], GEOTAR-MED, Moscow (2001), p. 278.

    Google Scholar 

  20. Z. A. Yanson, “The effects of the mesencephalic reticular formation on the spatial synchronization of brain biopotentials,” Zh. Vyssh. Nerv. Deyat., 23,No. 1, 159–165 (1973).

    Google Scholar 

  21. V. Braitenberg, “Cortical architectonics: general and areal,” in: Architectonics of the Cerebral Cortex, Raven Press, New York (1978), pp. 443–465.

    Google Scholar 

  22. C. Dehay, H. Kennedy, and J. Bullier, “Callosal connectivity of areas V1 and V2 in the newborn monkey,” J. Comp. Neurol., 254,No. 1, 20–32 (1986).

    Google Scholar 

  23. A. A. Ivonin, R. A. Galimov, M. N. Tsitseroshin, and A. A. Pogosyan, “Genetical aspects of formation of mechanisms of integration of neocortex bioelectrical activity into the single dynamic system,” in: Mechanisms of Adaptive Behavior. Abstracts (International Symposium Dedicated to Academician Ivan Pavlov's 150th Anniversary, St. Petersburg, December 7–9, 1999), Russian Academy of Sciences, St. Petersburg (1999), pp. 110–111.

    Google Scholar 

  24. Z. J. Martinovihc, V. Jovanovihc, and D. Ristanovihc, “Computerized EEG topography of normal preadolescent twins — correlation similarity of background activity with genetic relatedness,” Brain Topogr., 9,No. 4, 303–311 (1997).

    Google Scholar 

  25. J. S. Oppenheim, J. E. Skerry, M. J. Tramo, and M. S. Gazzaniga, “Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins,” Ann. Neurol., 26,No. 1, 100–104 (1989).

    Google Scholar 

  26. G. Remaekers, “Embryology and anatomy of the corpus callosum,” in: Pediatric Behavioural Neurology. The Child's Corpus Callosum, Suyi Publishers, Amsterdam (1991), pp. 24–49.

    Google Scholar 

  27. A. N. Shepovalnikov, M. N. Cicerochin, A. A. Pogosyan, N. A. Khodorkovskaya, M. N. Stepanova, L. A. Andreeva, E. I. Galperina, and F. Peyralade, “Normalisation des processus neurophysiologiques du systeme nerveux central grace au traitement osteopathique. ApoStill,” J. l'Academie d'Osteopathie de France Automne, No. 7, 7–21 (2000).

    Google Scholar 

  28. H. Steinmetz, A. Herzog, Y. Huang, and T. Hacklander, “Discordant brain-surface anatomy in monozygotic twins,” New Engl. J. Med., 331,No. 14, 951–952 (1994).

    Google Scholar 

  29. G. C. van Baal, E. J. de Geus, and D. I. Boomsma, “Genetic influences of EEG coherence in 5-year-old twins,” Behav. Genet., 28,No. 1, 9–19 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivonin, A.A., Tsitseroshin, M.N., Pogosyan, A.A. et al. Genetic Determination of Neurophysiological Mechanisms of Cortical-Subcortical Integration of Bioelectrical Brain Activity. Neurosci Behav Physiol 34, 369–378 (2004). https://doi.org/10.1023/B:NEAB.0000018749.36457.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000018749.36457.d9

Navigation