Skip to main content
Log in

Axon Reactions Precede Demyelination in Experimental Models of Multiple Sclerosis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. S. S. Sergeeva, D. Deleva, É. Zapryanova, “Responses of Retzius neurons in the leech to synaptic activation at different frequencies during exposure to antiserum to gangliosides,” Dokl. Akad. Nauk, 362,No. 2, 280–282 (1998).

    Google Scholar 

  2. S. S. Sergeeva, O. S. Sotnikov, D. Deleva, et al., “The actions of antibodies to gangliosides on electrogenesis and Na channel activity in membranes of leech visceral neurons,” in: Proceedings of the International Conference Celebrating the 150th Anniversary of I. P. Pavlov, “Mechanisms of Function of Visceral System” [in Russian], I. P. Pavlov Institute of Physiology Press, Russian Academy of Sciences, St. Petersburg (1999), pp. 341–342.

    Google Scholar 

  3. O. S. Sotnikov, Functional Morphology of Living Tissue Nerve Fibers [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  4. E. Alvord, M. Kies, and A. Sucking, “Useful model for multiple sclerosis,” in: Experimental Allergic Encephalomyelitis, Academic Press, New York (1984).

    Google Scholar 

  5. M. Christova-Grekova, M. Svetoslavova, E. Zaprianova, et al., “Effect of exogenic brain gangliosides in the CNS-clinical and immunological data,” Compt. Rend. Acad. Sci. Bulg., 41, 145–147 (1988).

    Google Scholar 

  6. D. Collins and G. Francis, “Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions,” Ann. Neurol., 41, 385–391 (1997).

    Google Scholar 

  7. R. J. Cotello and U. Pott, “Signals that initiate myelination in the developing mammalian nervous system,” Mol. Neurobiol., 15,No. 1, 83–100 (1997).

    Google Scholar 

  8. G. de Vries and W. Norton, “The lipid composition of axons from bovine brain,” J. Neurochem., 22, 259–264 (1974).

    Google Scholar 

  9. J. P. Doyle and D. R. Colman, “Glial-neuron interactions and the regulation of myelin formation,” Curr. Opin. Cell. Biol., 5, 779–785 (1993).

    Google Scholar 

  10. J. Heley and R. Ledeen, “Incorporation of axonally transported substances into myelin lipids,” J. Neurochem., 32, 735–742 (1979).

    Google Scholar 

  11. G. L. Kidd, P. E. Hauer, and B. D. Trapp, “Axons modulate myelin protein messenger RNA levels during central nervous system myelination in vivo,” J. Neurosci., 26, 409–418 (1990).

    Google Scholar 

  12. H. Lassmann, K. Kitz, and H. Wisniewski, “Structural variability of demyelinating lesion in different models of subacute and chronic experimental allergic encephalomyelitis,” Acta Neuropathol. (Bel.), 51, 191–201 (1980).

    Google Scholar 

  13. C. S. Raine, “Biology of disease — analysis of autoimmune demyelination: its impact upon multiple sclerosis,” Lab. Invest., 50, 608–635 (1984).

    Google Scholar 

  14. B. D. Trapp, P. Hauer, and G. Kemke, “Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells,” J. Neurosci., 8,No. 9, 3515–3521 (1988).

    Google Scholar 

  15. B. Trapp, J. Peterson, R. Ransohoff, et al., “Axonal transection in the lesions of multiple sclerosis,” New Engl. J. Med., 338, 278–285 (1998).

    Google Scholar 

  16. S. Waxman, “Multiple sclerosis as a neuronal disease,” Arch. Neurol., 57, 22–24 (2000).

    Google Scholar 

  17. R. Yu, and R. Igbal, “Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: gangliosides of human myelin, oligodendroglia and neurons,” J. Neurochem., 32, 293–300 (1979).

    Google Scholar 

  18. E. Zaprianova, “Histochemistry and morphological metabolism of lipids in the chicken brain in relation to myelination,” Acta Anat., 75, 267–300 (1970).

    Google Scholar 

  19. E. Zaprianova, “The activity of the nerve cells at the time of myelination in the central nervous system,” in: Proc. VII. International Congr. Neuropathol., Excerpta Medica, Amsterdam (1975), pp. 729–732.

  20. E. Zaprianova, Myelination in the Central Nervous System, Bulgarian Academy of Sciences Press, Sofia (1980), p. 124.

    Google Scholar 

  21. E. Zaprianova, “Central nervous system myelin sheath,” in: Abstr. Regional South-East Europ. Conf. Neurol. Psych., Varna (1984), p. 107.

  22. E. Zaprianova, “Neuronal-glial interactions during production of myelin phospholipids,” Neuropathol. Applied Neurobiol., 22,Suppl. 1, 32–33 (1996).

    Google Scholar 

  23. E. Zaprianova, D. Deleva, and A. Filchev, “Ganglioside changes in brain in chronic relapsing experimental allergic encephalomyelitis induced in the Lewis rat,” Neurochem. Res., 23,No. 11, 1421–1425 (1998).

    Google Scholar 

  24. E. Zaprianova, D. Deleva, P. Ilinov, et al., “Serum ganglioside patterns in multiple sclerosis,” Neurochem. Res., 26,No. 2, 95–100 (2001).

    Google Scholar 

  25. F. Zipp, P. H. Krammer, and M. Weller, “Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system,” Immunol. Today, 20,No. 12, 550–554 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapryanova, É., Sotnikov, O.S., Sergeeva, S.S. et al. Axon Reactions Precede Demyelination in Experimental Models of Multiple Sclerosis. Neurosci Behav Physiol 34, 337–342 (2004). https://doi.org/10.1023/B:NEAB.0000018743.05208.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000018743.05208.23

Keywords

Navigation