Skip to main content
Log in

Neurons of Layer I and Their Significance in the Embryogenesis of the Neocortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. G. Belekhova, The Thalamo-Telencephalic System of Reptiles [in Russian], Nauka, Leningrad (1977).

    Google Scholar 

  2. S. M. Blinkov and I. I. Glezer, The Human Brain in Numbers and Tables [in Russian], Meditsina, Moscow (1964).

    Google Scholar 

  3. I. V. Dyuizen, V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “The transmitter organization of neurons in the hippocampal formation,” Morfologiya, 10,No. 6, 49–54 (1996).

    Google Scholar 

  4. V. E. Okhotin, I. V. Dyuizen, S. G. Kalinichenko, and G. Yu. Sulimov, “The GABAergic basked-pyramidal and basket-granule systems of the hippocampal formation,” Byull. Éksperim. Biol., 119,No. 6, 644–646 (1995).

    Google Scholar 

  5. V. E. Okhotin and S. G. Kalinichenko, “Aspartatergic pyramidal neurons of Bets in the cat motor cortex,” Byull. Éksperim. Biol., 122,No. 7, 100–102 (1996).

    Google Scholar 

  6. V. E. Okhotin and S. G. Kalinichenko, “Morphofunctional characteristics of neurons and their connections in the human and animal neocortex,” Usp. Fiziol. Nauk., 28,No. 2, 40–56 (1997).

    Google Scholar 

  7. V. E. Okhotin and S. G. Kalinichenko, “Candelabra cells and axoaxonal inhibition in the neocortex, hippocampus, and dentate gyrus,” Morfologiya, 119,No. 3, 7–23 (2001).

    Google Scholar 

  8. V. E. Okhotin and S. G. Kalinichenko, “Histophysiology of basket cells of the neocortex,” Morfologiya, 120,No. 4, 7–24 (2001).

    Google Scholar 

  9. V. E. Okhotin and S. G. Kalinichenko, “Autapses and the question of self-innervation of cortical neurons: historical and conceptual aspects,” Morfologiya, 120,No. 6, 85–89 (2001).

    Google Scholar 

  10. V. E. Okhotin and S. G. Kalinichenko, “Interstitial cells of the white matter of the neocortex, their connections, neurochemical specialization, and role in the histogenesis of the cortex,” Morfologiya, 121,No. 1, 7–26 (2002).

    Google Scholar 

  11. V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “Cholinergic neurons in the motor area of the human cerebral cortex,” Morfologiya, 113,No. 1, 29–33 (1998).

    Google Scholar 

  12. V. E. Okhotin and V. V. Kupriyanov, “Neurovasal relationships in the neocortex of the human brain,” Morfologiya, 110,No. 4, 17–22 (1996).

    Google Scholar 

  13. G. I. Polyakov, Bases of the Systematics of Neurons in the Human Cerebral Neocortex [in Russian], Meditsina, Moscow (1973).

    Google Scholar 

  14. L. I. Khozhai and V. A. Otellin, “Morphogenesis of layer I of the mouse cortex during the prenatal period of development,” Ontogenez, 30,No. 1, 40–46 (1999).

    Google Scholar 

  15. L. I. Khozhai and V. A. Otellin, “The initial stage of differentiation of pyramidal neurons in the deep layers of the neocortex in mice during the prenatal period of development,” Morfologiya, 118,No. 5, 7–11 (2000).

    Google Scholar 

  16. E. G. Shkol'nik-Yarros, “Neurons and Interneuronal Connections: The Visual Analyzer [in Russian], Nauka, Leningrad (1965).

    Google Scholar 

  17. F. Aboitiz, “Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge. Evolutionary consideration,” Cereb. Cortex, 9, 783–791 (1999).

    Google Scholar 

  18. J. Altman and S. A. Bayer, Development of the Cerebellar System in Relation to its Evolution, Structure, and Function, CRC Press, Boca Raton, Florida (1996).

    Google Scholar 

  19. S. Anderson, D. Eisenstat, L. Shi, and J. L. R. Rubenstein, “Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes,” Science, 278, 474–476 (1997).

    Google Scholar 

  20. S. Anderson, O. Marin, C. Horn, et al., “Distinct cortical migrations from the medial and lateral ganglionic eminences,” Development, 128, 353–363 (2001).

    Google Scholar 

  21. J. C. Anderson, K. A. C. Martin, and C. W. Picanço-Diniz, “The neurons in layer I of cat visual cortex,” Proc. Roy. Soc. B., 248, 27–33 (1992).

    Google Scholar 

  22. S. Anderson, M. Mione, K. Yun, and J. L. R. Rubinstein, “Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis,” Cereb. Cortex, 9, 646–654 (1999).

    Google Scholar 

  23. Y. Arimatsu, M. Ishida, K. Takiguchi-Hayashi, and Y. Uratani, “Cerebral cortical specification by early potential restriction of progenitor cells and later phenotype control of postmitotic neurons,” Development, 126, 629–638 (1999).

    Google Scholar 

  24. M. F. Barbe and P. Levitt, “Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant,” Proc. Natl. Acad. Sci. USA, 89, 3706–3710 (1992).

    Google Scholar 

  25. M. F. Barbe and P. Levitt, “Age-dependent specification of the corticocortical connections of cerebral grafts,” J. Neurosci., 15, 1819–1834 (1995).

    Google Scholar 

  26. S. A. Bayer and J. Altman, “Development of layer I and the subplate in the rat neocortex,” Exptl. Neurol., 107, 48–62 (1990).

    Google Scholar 

  27. R. Bradford, J. G. Parnavelas, and A. R. Lieberman, “Neurons in layer I of the developing occipital cortex of the rat,” J. Comp. Neurol., 176, 121–132 (1977).

    Google Scholar 

  28. K. Brodman, Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues [in German], Barth, Leipzig (1909).

    Google Scholar 

  29. A. Brun, “The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance of congenital cortical malformations,” Acta Path. Microbiol. Scand., 179,Suppl., 1–98 (1965).

    Google Scholar 

  30. V. Castellani, Y. Yue, P.-P. Gao, et al., “Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits,” J. Neurosci., 18, 4663–4672 (1998).

    Google Scholar 

  31. B. Clancy, R. B. Darlington, and B. L. Finlay, “Translating developmental time across mammalian species,” Neurosci., 105, 7–17 (2001).

    Google Scholar 

  32. J. E. Crandall and V. S. Caviness, “Axon strata of the cerebral wall in embryonic mice,” Dev. Brain Res., 14, 185–195 (1984).

    Google Scholar 

  33. O. D. Creutzfeldt, “Generality of the functional structure of the neocortex,” Naturwissenschaften, 64, 507–517 (1977).

    Google Scholar 

  34. J. A. De Carlos, L. Lypez-Mascaraque, and F. Valverde, “Dynamics of cell migration from the lateral ganglionic eminence in the rat,” J. Neurosci., 16, 6146–6156 (1996).

    Google Scholar 

  35. C. Dehay, P. Savatier, V. Cortay, and H. Kennedy, “Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons,” J. Neurosci., 21, 201–214 (2001).

    Google Scholar 

  36. M. Denaza, C.-H. Chan, M. Schachner, et al., “The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system,” Development, 128, 4635–4644 (2001).

    Google Scholar 

  37. A. R. Desai and S. K. McConnell, “Progressive restriction in fate potential by neural progenitors during cerebral cortical development,” Development, 127, 2863–2872 (2000).

    Google Scholar 

  38. M. J. Donoghue and P. Rakic, “Molecular evidence for early specification of presumptive functional domains in the embryonic primate cerebral cortex,” J. Neurosci., 19, 5967–5979 (1999).

    Google Scholar 

  39. M. J. Donoghue and P. Rakic, “Molecular gradients and compartments in the embryonic primate cerebral cortex,” Cereb. Cortex, 9, 586–600 (1999).

    Google Scholar 

  40. I. V. Dyuizen, V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “Neurochemical characteristics of neurons of the human hippocampal formation,” Neurosci. Behav. Physiol., 28, 94–100 (1998).

    Google Scholar 

  41. K. L. Eagleson and P. Levitt, “Complex signaling responsible for molecular regionalization of the cerebral cortex,” Cereb. Cortex, 9, 562–568 (1999).

    Google Scholar 

  42. R. Erzurumlu and S. Jhaveri, “Emergence of connectivity in the embryonic rat parietal cortex,” Cereb. Cortex, 2, 336–352 (1992).

    Google Scholar 

  43. A. Fairen, G. Alvarez-Bolado, I. DeDiego, and A. Smith-Fernandez, “GABA-immunoreactive cells of the cortical primordium contribute to distinctly fated neuronal populations,” Perspect. Dev. Neurobiol., 5, 159–173 (1998).

    Google Scholar 

  44. J. G. Flanagan and P. Vanderhaeghen, “The ephrins and eph receptors in neural development,” Ann. Rev. Neurosci., 21, 309–345 (1998).

    Google Scholar 

  45. I. Frappé, M. Roger, and A. Gaillard, “Transplants of fetal frontal cortex grafted into the occipital cortex of newborn rats receive a substantial thalamic input from nuclei normally projecting to the frontal cortex,” Neurosci., 89, 409–421 (1999).

    Google Scholar 

  46. J. F. Gadisseuz, A. M. Goffinet, G. Lyon, and P. Evrard, “The human transient subpial granular layer: An optical, immunohistochemical and ultrastructural analysis,” J. Comp. Neurol., 324, 94–114 (1992).

    Google Scholar 

  47. A. Gaillard and M. Roger, “Early commitment of embryonic neocortical cells to develop area-specific thalamic connections,” Cereb. Cortex, 10, 443–453 (2000).

    Google Scholar 

  48. P.-P. Gao, Y. Yue, J.-H. Zhang, et al., “Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: Implications in the development of thalamocortical projections,” Proc. Natl. Acad. Sci. USA, 95, 5329–5334 (1998).

    Google Scholar 

  49. Y. Gitton, M. Cohen-Tannoudji, and M. Wassef, “Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex-specific marker,” Cereb. Cortex, 9, 611–620 (1999).

    Google Scholar 

  50. E. A. Grove, S. Tole, J. Limon, et al., “The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice,” Development, 125, 2315–2325 (1998).

    Google Scholar 

  51. K, Gunhaga, T. M. Jessell, and T. Edlund, “Sonic hedgehog signaling at gastrula stages specifies ventral telencephalic cells in the chick embryo,” Development, 127, 3283–3293 (2000).

    Google Scholar 

  52. M. E. Hatten, “Central nervous system neuronal migration,” Ann. Rev. Neurosci., 22, 511–539 (1999).

    Google Scholar 

  53. T. F. Haydar, F. Wang, M. L. Schwartz, and P. Rakic, “Differential modulation of proliferation in the neocortical ventricular and subventricular zones,” J. Neurosci., 20, 5764–5774 (2000).

    Google Scholar 

  54. S. H. C. Hendry, H. D. Schwark, E. G. Jones, and J. Yan, “Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex,” J. Neurosci., 7, 1503–1519 (1987).

    Google Scholar 

  55. N. Hider and R. Klein, “Eph receptors and ephrins: effectors of morphogenesis,” Development, 126, 2033–2044 (1999).

    Google Scholar 

  56. K. J. Huffman, Z. Molner, A. Van Dellen, et al., “Formation of cortical fields on a reduced cortical sheet,” J. Neurosci., 19, 9939–9952 (1999).

    Google Scholar 

  57. E. G. Jones, “Modulatory events in the development and evolution of primate neocortex,” in: Cerebral Cortex, Vol. 8, Comparative Structure and Evolution of Cerebral Cortex, Plenum Press, New York (1990), pp. 311–372.

    Google Scholar 

  58. H. J. Karten, “Homology and evolutionary origins of the ‘neocortex,’” Brain Behav. Ecol., 38, 264–272 (1991).

    Google Scholar 

  59. H. J. Karten, “Evolutionary developmental biology meets the brain: The origins of mammalian cortex,” Proc. Natl. Acad. Sci. USA, 94, 2800–2804 (1997).

    Google Scholar 

  60. N. Konig, G. Roch, and R. Marty, “The onset of synaptogenesis in rat temporal cortex,” Anat. Embryol., 148, 73–87 (1975).

    Google Scholar 

  61. D. R. Kornack and P. Rakic, “Changes in cell-cycle kinetics during the development and evolution of primate neocortex,” Proc. Natl. Acad. Sci. USA, 95, 1242–1246 (1998).

    Google Scholar 

  62. L. Krubitzer, “The organization of neocortex in mammals: are species differences really so different?” Trends Neurosci., 18, 408–417 (1995).

    Google Scholar 

  63. C.-Y. Kuan, E. A. Elliott, R. A. Flavell, and P. Rakic, “Restrictive clonal allocation in the chimeric mouse brain,” Proc. Natl. Acad. Sci. USA, 94, 3374–3379 (1997).

    Google Scholar 

  64. A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. G. Parnavelas, “The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex,” J. Neurosci., 19, 7881–7888 (1999).

    Google Scholar 

  65. P. Levitt, M. F. Barbe, and K. L. Eagleson, “Patterning and specification of the cerebral cortex,” Ann. Rev. Neurosci., 20, 1–24 (1997).

    Google Scholar 

  66. P. Levitt and K. L. Eagleson, “Regionalization of the cerebral cortex: developmental mechanisms and models,” in: Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Foundation Symposium (2000), Vol. 228, pp. 173–187.

    Google Scholar 

  67. K. Mackarehtschian, C. K. Lau, I. Caras, and S. K. McConnell, “Regional differences in the developing cerebral cortex revealed by Ephrin-A5 expression,” Cereb. Cortex, 9, 601–610 (1999).

    Google Scholar 

  68. S. M. Maricich, E. C. Gilmore, and K. Herrup, “The role of tangential migration in the establishment of mammalian cortex,” Neuron, 31, 175–178 (2001).

    Google Scholar 

  69. O. Marin, S. Anderson, and J. L. R. Rubinstein, “Origin and molecular specification of striatal interneurons,” J. Neurosci., 20, 6063–6076 (2000).

    Google Scholar 

  70. O. Marin, A. Yaron, A. Bagri, et al., “Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions,” Science, 293, 872–875 (2001).

    Google Scholar 

  71. M. Marin-Padilla, “Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization,” Z. Anat. Entwickl. Gesch., 134, 117–145 (1971).

    Google Scholar 

  72. M. Marin-Padilla, “Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances,” Z. Anat. Entwickl. Gesch., 136, 125–142 (1972).

    Google Scholar 

  73. M. Marin-Padilla, “Dual origin of the mammalian neocortex and evolution of the cortical plate,” Anat. Embryol., 152, 109–126 (1978).

    Google Scholar 

  74. M. Marin-Padilla, “Structural organization of the human cerebral cortex prior to the appearance of the cortical plate,” Anat. Embryol., 168, 21–40 (1983).

    Google Scholar 

  75. M. Marin-Padilla, “Early vascularization of the embryonic cerebral cortex. Golgi and electron microscopic study,” J. Comp. Neurol., 241, 237–249 (1985).

    Google Scholar 

  76. M. Marin-Padilla, “Early ontogenesis of the human cerebral cortex,” in: Cerebral Cortex, Vol. 7, Development and Maturation of Cerebral Cortex, Plenum Press, New York (1988), pp. 1–34.

    Google Scholar 

  77. M. Marin-Padilla, “Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory,” J. Comp. Neurol., 321, 223–240 (1992).

    Google Scholar 

  78. M. Marin-Padilla, “Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study,” J. Comp. Neurol., 357, 554–572 (1995).

    Google Scholar 

  79. M. Marin-Padilla, “Cajal-Retzius cells and the development of the neocortex,” Trends Neurosci., 21, 64–71 (1998).

    Google Scholar 

  80. M. Marin-Padilla, “Desarrollo de la corteza cerebral humana. Teoria cytoarquitectonica,” Rev. Neurol., 29, 208–216 (1999).

    Google Scholar 

  81. M. Marin-Padilla, “Evolucion de la estructura de la neocorteza del mammifero: nueva teoria cytoarquitectonica,” Rev. Neurol., 33, 843–853 (2001).

    Google Scholar 

  82. M. Marin-Padilla and T. M. Marin-Padilla, “Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex: A Golgi study,” Anat. Embryol., 164, 161–206 (1982).

    Google Scholar 

  83. E. Markova, I, Markov, A. Revishchin, and V. Okhotin, “3-D Golgi and image analysis of the olfactory tubercle in schizophrenia,” Anal. Quant. Cytol. Histol., 22, 178–182 (2000).

    Google Scholar 

  84. S. K. McConnell, “Constructing the cerebral cortex: neurogenesis and fate determination,” Neuron, 15, 761–768 (1995).

    Google Scholar 

  85. G. Mellitzer, Q. Xu, and D. G. Wilkinson, “Control of cell behaviour by signalling through Eph receptors and ephrins,” Curr. Opin. Neurobiol., 10, 400–408 (2000).

    Google Scholar 

  86. P. Menzel, F. Valencia, P. Godement, et al., “Ephrin-A6, a new ligand for EphA receptors in the developing visual system,” Dev. Biol., 230, 74–88 (2001).

    Google Scholar 

  87. G. Meyer, R. Castro, J. M. Soria, and A. Fairén, “The subpial granular layer in the developing cerebral cortex of rodents,” Results Probl. Cell Differ., 30, 277–291 (2000).

    Google Scholar 

  88. G. Meyer and A. Fairén, “Different origins and developmental histories of transient neurons in the marginal zone of the fetal rat cortex,” Soc. Neurosci. Abstr., 22, 403–417 (1996).

    Google Scholar 

  89. G. Meyer and A. M. Goffinet, “Prenatal development of reelin-immunoreactive neurons in the human neocortex,” J. Comp. Neurol., 397, 29–40 (1998).

    Google Scholar 

  90. G. Meyer and T. González-Hernández, “Developmental changes in layer I of the human neocortex during prenatal life: A Dil-tracing and AchE and NADPH-d histochemistry study,” J. Comp. Neurol., 338, 317–336 (1993).

    Google Scholar 

  91. G. Meyer, J. P. Schaaps, L. Moreau, and A. M. Goffinet, “Embryonic and early fetal development of the human neocortex,” J. Neurosci., 20, 1858–1868 (2000).

    Google Scholar 

  92. G. Meyer, J. M. Soria, J. R. Martinez-Galán, et al., “Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex,” J. Comp. Neurol., 397, 493–518 (1998).

    Google Scholar 

  93. G. Meyer and P. Wahle, “The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex,” Eur. J. Neurosci., 11, 3937–3944 (1999).

    Google Scholar 

  94. E. M. Miyashita-Lin, R. Hevner, K. M. Wassarman, et al., “Early neocortical regionalization in the absence of thalamic innervation,” Science, 285, 906–909 (1999).

    Google Scholar 

  95. P. J. Morgane, I. I. Glezer, and M. S. Jacobs, “Comparative and evolutionary anatomy of the visual cortex of the dolphin,” in: Cerebral Cortex, Vol. 8B, Comparative Structure and Evolution of Cerebral Cortex, Plenum Press, New York (1990), pp. 215–262.

    Google Scholar 

  96. V. Mountcastle, “The columnar organization of the neocortex,” Brain, 120, 701–722 (1997).

    Google Scholar 

  97. Y. Nakagawa, J. E. Johnson, and D. D. M. O'Leary, “Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input,” J. Neurosci., 19, 10877–10885 (1999).

    Google Scholar 

  98. S. Z. H. Naqui, B. S. Harris, D. Thomaidou, and J. G. Parnavelas, “The noradrenergic system influences the fat of Cajal—Retzius cells in the developing cerebral cortex,” Dev. Brain Res., 113, 75–82 (1999).

    Google Scholar 

  99. R. Nieuwenhuys, “The neocortex. An overview of its evolutionary development, structural organization and synaptology,” Anat. Embryol., 190, 307–337 (1994).

    Google Scholar 

  100. R. G. Northcutt and J. H. Kass, “The emergence and evolution of mammalian neocortex,” Trends Neurosci., 18, 373–379 (1995).

    Google Scholar 

  101. V. E. Okhotin and S. G. Kalinichenko, “Localization of NO-synthase in Lugaro cells and the mechanisms of NO-ergic interaction between inhibitory interneurons in the rabbit cerebellum,” Neurosci. Behav. Physiol., 30, 525–533 (2000).

    Google Scholar 

  102. V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “Cholinergic neurons in the motor areas of the human cerebral cortex,” Neurosci. Behav. Physiol., 29, 227–231 (1999).

    Google Scholar 

  103. V. E. Okhotin and V. V. Kupriyanov, “Neurovascular relationships in the human neocortex,” Behav. Physiol., 27, 482–488 (1997).

    Google Scholar 

  104. D. D. O'Leary, “Do cortical areas emerge from a protocortex?” Trends Neurosci., 12, 400–406 (1989).

    Google Scholar 

  105. D. D. M. O'Leary, B. L. Schlaggar, and R. Tuttle, “Specification of neocortical areas and thalamocortical connections,” Ann. Rev. Neurosci., 17, 419–439 (1994).

    Google Scholar 

  106. N. A. O'Rourke, D. P. Sullivan, C. E. Kaznowski, et al., “Tangential migration of neurons in the developing cerebral cortex,” Development, 121, 2165–2176 (1995).

    Google Scholar 

  107. S. L. Pallas, “Intrinsic and extrinsic factors that shape neocortical specification,” Trends Neurosci., 24, 417–423 (2001).

    Google Scholar 

  108. K. G. Parnavelas, “The origin and migration of cortical neurones: new vistas,” Trends Neurosci., 23, 126–131 (2000).

    Google Scholar 

  109. J. G. Parnavelas, S. A. Anderson, A. A. Lavdas, et al., “The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex,” in: Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Foundation Symposia (2000), Vol. 228, pp. 129–147.

    Google Scholar 

  110. C. G. Pirez-Garcia, F. J. González-Delgado, and M. L. Suarez-Solá, et al., “Reelin-immunoreactive neurons in the adult vertebrate pallium,” J. Chem. Neuroanat., 21, 41–51 (2001).

    Google Scholar 

  111. S. J. Pleasure, S. Anderson, R. Hevner, et al., “Cell migration from the ganglionic eminence is required for the development of hippocampal GABAergic interneurons,” Neuron, 28, 727–740 (2000).

    Google Scholar 

  112. F. Polleux, C. Dehay, B. Moraillon, and H. Kennedy, “Regulation of neuroblast cell-cycle kinetics plays a critical role in the generation of unique features of neocortical areas,” J. Neurosci., 17, 7763–7783 (1997).

    Google Scholar 

  113. N. Prakash, P. Vanderhaeghen, S. Cohen-Cory, et al., “Malformation of the functional organization of somatosensory cortex in adult ephrin-A5 knock-out mice revealed by in vivo functional imaging,” J. Neurosci., 20, 5841–5847 (2000).

    Google Scholar 

  114. A. Raedler and J. Sievers, “Light and electron microscopical studies on specific cells of the marginal zone in the developing rat cerebral cortex,” Anat. Embryol., 149, 173–181 (1976).

    Google Scholar 

  115. C. W. Ragsdale and E. A. Grove, “Patterning the mammalian cerebral cortex,” Opin. Neurobiol., 11, 50–58 (2001).

    Google Scholar 

  116. P. Rakic, “Specification of cerebral cortex areas,” Science, 241, 170–176 (1988).

    Google Scholar 

  117. P. Rakic, “A small step for the cell, a giant leap for mankind: a hypothesis for neocortical expansion during evolution,” Trends Neurosci., 18, 282–288 (1995).

    Google Scholar 

  118. P. Rakic, “Radial versus tangential migration of neuronal clones in the developing cerebral cortex,” Proc. Natl. Acad. Sci. USA, 92, 11323–11327 (1995).

    Google Scholar 

  119. P. Rakic, “Radial unit hypothesis of neocortical expansion,” in: Evolutionary Developmental Biology of the Cerebral Cortex,” Novartis Found. Symp. (2000), Vol. 228, pp. 30–42.

    Google Scholar 

  120. P. Rakic and R. L. Sidman, “Histogenesis of cortical layers in human cerebellum, particularly in the lamina dessicans,” J. Comp. Neurol., 139, 473–500 (1970).

    Google Scholar 

  121. P. Rakic, I. Sucer, and R. W. Williams, “A novel cytoarchitectonic area induced experimentally within the primate visual cortex,” Proc. Natl. Acad. Sci. USA, 88, 2083–2087 (1991).

    Google Scholar 

  122. S. Ramon y Cajal, “La retine des vertebres,” La Cellule, 9, 119–257 (1892).

    Google Scholar 

  123. S. Ramon y Cajal,, “Estudios sobre la corteza cerebral humana. I. Corteza visual,” Trimestral Micrografica, 4, 1–63 (1899).

    Google Scholar 

  124. O. Ranke, “Beitrage zur Kenntnis der normalen und pathologischen Hirnrindenbildung,” Beitr. Pathol. Anat., 47, 51–125 (1909).

    Google Scholar 

  125. C. B. Reid, S. F. Tavazoie, and C. Walsh, “Clonal dispersion and evidence for asymmetric cell division in ferret cortex,” Development, 124, 2441–2450 (1997).

    Google Scholar 

  126. A. J. Rockel, R. W. Hiorns, and T. P. S. Powell, “The basic uniformity in structure of the neocortex,” Brain, 103, 221–224 (1980).

    Google Scholar 

  127. J. L. R. Rubinstein, “Intrinsic and extrinsic control of cortical development,” in: Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Found. Symp (2000), Vol. 228, pp. 67–82.

    Google Scholar 

  128. J. L. R. Rubinstein, S. A. Anderson, L. Shi, et al., “Genetic control of cortical regionalization and connectivity,” Cereb. Cortex, 9, 524–532 (1999).

    Google Scholar 

  129. A. Ruiz Altaba, Y. Gitton, and N. Dahmane, “Embryonic regionalization of the neocortex,” Mechanism. Dev., 107, 3–11 (2001).

    Google Scholar 

  130. F. Sanides and D. Sanides, “The ‘extraverted neurons’ of the mammalian cerebral cortex,” Z. Anat. Entwick. Gesch., 136, 272–293 (1972).

    Google Scholar 

  131. N. Sestan, P. Rakic, and M. J. Donoghue, “Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression,” Curr. Biol., 11, 39–43 (2001).

    Google Scholar 

  132. B. L. Schlaggar and D. D. M. O'Leary, “Potential of visual cortex to develop an array of functional units unique to somatosensory cortex,” Science, 252, 1556–1560 (1991).

    Google Scholar 

  133. D. Schmucker and S. L. Zipursky, “Signaling downstream of Eph receptors and ephrin ligands,” Cell, 105, 701–704 (2001).

    Google Scholar 

  134. C. J. Schatz, “Impulse activity and the patterning of connections during CNS development,” Neuron, 5, 745–756 (1991).

    Google Scholar 

  135. J. M. Soria and A. Fairan, “Cellular mosaics in the rat marginal zone define and early neocortical territorialization,” Cereb. Cortex, 10, 400–412 (2000).

    Google Scholar 

  136. A. Sousa-Pinto, M. Paula-Barbosa, and M. Carmo Matas, “A Golgi and electron microscopical study of nerve cells in layer 1 of cat auditory cortex,” Brain Res., 95, 443–458 (1975).

    Google Scholar 

  137. R. W. Sperry, “Chemoaffinity in the orderly growth of nerve fiber patterns and connections,” Proc. Natl. Acad. Sci. USA, 50, 703–710 (1963).

    Google Scholar 

  138. E. Stein, N. E. Savaskan, O. Ninneman, et al., “A role for the Eph ligand ephrin-A3 in entorhino-hippocampal targeting,” J. Neurosci., 19, 8885–8893 (1999).

    Google Scholar 

  139. T. Stühmer, L. Puelles, M. Ekker, and J. L. R. Rubinstein, “Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons,” Cereb. Cortex, 12, 75–85 (2002).

    Google Scholar 

  140. H. Supér, E. Soriano, and H. B. M. Uylings, “The functions of the preplate in development and evolution of the neocortex and hippocampus,” Brain Res. Dev., 27, 40–64 (1998).

    Google Scholar 

  141. H. Supér and H. B. M. Uylings, “The early differentiation of the neocortex: a hypothesis on neocortical evolution,” Cereb. Cortex, 11, 1101–1109 (2001).

    Google Scholar 

  142. M. Tessier-Lavigne and C. S. Goodman, “The molecular biology of axon guidance,” Science, 274, 1123–1133 (1996).

    Google Scholar 

  143. F. Valverde and M. V. Facal-Valverde, “Neocortical layers I and II of the hedgehog, Erinaceus europaeus. I. Intrinsic organization,” Anat. Embryol., 173, 413–420 (1986).

    Google Scholar 

  144. H. Wichterle, J. M. Garcia-Verdugo, D. G. Herrera, and A. Alvarez-Buylla, “Young neurons from medial ganglionic eminence disperse in adult and embryonic brain,” Nat. Neurosci., 2, 461–466 (1999).

    Google Scholar 

  145. H. Wichterle, D. H. Turnbull, S. Nery, et al., “In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain,” Development, 128, 3759–3771 (2001).

    Google Scholar 

  146. J. A. Winer and D. T. Larue, “Populations of GABAergic neurons and axons in layer 1 of rat auditory cortex,” Neurosci., 33, 499–515 (1989).

    Google Scholar 

  147. T. A. Woolsey and H. Van der Loos, “The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units,” Brain Res., 17, 205–242 (1970).

    Google Scholar 

  148. N. Zecevic, “Synaptogenesis in layer I of the human cerebral cortex in the first half of gestation,” Cereb. Cortex, 8, 245–252 (1998).

    Google Scholar 

  149. N. Zecevic, A. Milosevic, S. Rakic, and M. Marin-Padilla, “Early development and composition of the human primordial plexiform layer: An immunohistochemical study,” J. Comp. Neurol., 412, 241–254 (1999).

    Google Scholar 

  150. N. Zecevic and P. Rakic, “Development of layer I neurons in the primate cerebral cortex,” J. Neurosci., 21, 5607–5619 (2001).

    Google Scholar 

  151. X. Zhou, J. Suh, D. P. Cerrette, et al., “Ephrins stimulate neurite outgrowth during early cortical neurogenesis,” J. Neurosci. Res., 66, 1054–1063 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okhotin, V.E., Kalinichenko, S.G. Neurons of Layer I and Their Significance in the Embryogenesis of the Neocortex. Neurosci Behav Physiol 34, 49–66 (2004). https://doi.org/10.1023/B:NEAB.0000003247.01201.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000003247.01201.62

Navigation