Skip to main content
Log in

Brain Mechanisms for the Formation of New Movements during Learning: The Evolution of Classical Concepts

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Current concepts hold that the role of the motor cortex is limited to the control of the appropriate motoneurons on the “point-to-point” principle during the performance of specialized movements of the distal parts of the limbs. However, the last decade has seen the appearance of many data on the plasticity of the motor cortex and its active participation in the process of motor learning. Expression of fos genes has been observed in the motor cortex during the formation of specialized movements. Increases in intracortical horizontal connections in layers II–III during learning fine movements has been seen. The cholinergic input to layers II–III of the motor cortex plays a significant role in this. At the same time, data obtained by functional brain mapping have provided evidence that the activity of the motor cortex also increases during the practice of previously learned movements. This raises the question of the specific function of the motor cortex in the process of motor learning. During the formation of new movements during motor training, a number of previously used synergies interfere with the performance of newly formed coordinations and must be inhibited. The central mechanisms of interference of coordinations in humans have only just started to receive study. At the same time, there is an experimental model for the reorganization and inhibition of interfering synergies in animals. Reorganization of coordinations and inhibition of synergies interfering with the performance of a new movement have been shown to be a specific function of the motor area of the cortex. Cortical control persists during the automation of these synergies, which is not the case in other types of learned movements, though this in itself does not mean that conscious control of their performance also persists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Adrianov, Morphophysiological Differentiation of the Nucleus of the Motor Analyzer in the Dog and Its Involvement in the Visual Act [in Russian], Author's abstract of thesis for doctorate in medical sciences, Institute of the Brain, Moscow (1951).

    Google Scholar 

  2. O. S. Adrianov and T. A. Mering, An Atlas of the Dog Brain [in Russian], Medgiz, Moscow (1959).

    Google Scholar 

  3. Yu. I. Aleksandrov, The Psychophysiological Significance of Activity in Central and Peripheral Neurons in Behavior [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. P. K. Anokhin, “The question of the center and the periphery in current concepts of the physiology of nervous activity,” in: The Question of the Center and the Periphery in the Physiology of Nervous Activity [in Russian], Gor'kii (1935), pp. 9–70.

  5. P. K. Anokhin, Key Questions in Functional Systems Theory [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  6. É. A. Asratyan, “The cerebral cortex and nervous system plasticity. 1. Experiments based on paw amputation,” in: The Physiology of the Nervous System [in Russian], Academy of Medical Sciences of the USSR Press, Moscow (1953), pp. 247–266.

    Google Scholar 

  7. N. P. Balezina, M. E. Varga, O. N. Vasil'eva, et al., “Studies of the mechanisms of the reorganization of motor coordinations during learning,” in: Brain and Behavior [in Russian], Nauka, Moscow (1990), pp. 105–119.

    Google Scholar 

  8. N. P. Balezina and V. N. Mats, Involvement of the cerebellar nucleus in the formation and performance of an acquired motor coordination in dogs,” in: The Structural and Functional Organization of the Cerebellum [in Russian], Armenian Academy of Sciences Press (1991), pp. 76–91.

  9. N. A. Bernshtein, Essays on the Physiology of Movement and the Physiology of Activity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  10. N. A. Bernshtein, The Physiology of Movement and Activity [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  11. V. M. Bekhterev, The Bases of Studies of Brain Functions [in Russian], Brokhauz i Éfron, St. Petersburg (1906), Vol. 6, pp. 985–1234.

    Google Scholar 

  12. N. I. Burlachkova and M. E. Ioffe, “The specific features of the nuclear elements of the motor region of the cortex in organizing the accuracy of movement reactions,” Zh. Vyssh. Nerv. Deyat., 28,No. 3, 475–483 (1978).

    Google Scholar 

  13. N. V. Veber, S. Sh. Rapoport, and I. G. Sil'kis, “Long-term changes in the excitability of pyramidal tract neurons in cats,” Zh. Vyssh. Nerv. Deyat., 34,No. 3, 572–574 (1984).

    Google Scholar 

  14. R. L. Vinnik, “Physiology of the mechanism of several forms of defensive motor reflexes,” Zh. Vyssh. Nerv. Deyat., 8,No. 5, 693–701 (1958).

    Google Scholar 

  15. L. L. Voronin, “Studies of synaptic plasticity at the level of the archeo-and neocortex,” Neirofiziologiya, 16,No. 5, 651–665 (1984).

    Google Scholar 

  16. L. L. Voronin, I. E. Kudryashov, and S. V. Ioffe, “Long-term post-tetanic potentiation in the hippocampus and its relationship to mechanisms of the conditioned reflex,” Dokl. Akad. Nauk SSSR, 217,No. 6, 1453–1456 (1974).

    Google Scholar 

  17. L. S. Gambaryan, Questions of the Physiology of the Motor Analyzer [in Russian], Medgiz, Moscow (1962).

    Google Scholar 

  18. V. S. Gurfinkel', “Electrophysiological analysis of muscle function during walking using a femoral prosthesis after unilateral amputation,” in: Proceedings of the IV Scientific Session of the TsNIIPP, Moscow (1955), pp. 36–44.

  19. I. A. Zhuravin and N. M. Dubrovskaya, “Involvement of the cholinergic system of the synaptic of the rat brain in controlling various types of movement,” Zh. Vyssh. Nerv. Deyat., 50,No. 1, 103–112 (2000).

    Google Scholar 

  20. G. Zelenyi, N. Vysotskii, G. Dobrotina, et al., “Types and methods of formation of associative reflexes,” in: Proceedings of the VI All-Union Congress of Physiologists, Biochemists, and Pharmacologists [in Russian], Tbilisi (1937), pp. 165–171.

  21. A. G. Ivanov-Smolenskii, “Major types of conditioned-and unconditioned reflex activity in humans and their anatomical substrates,” Zh. Nevropatol. Psikhiatr., 21,No. 3, 229–248 (1928).

    Google Scholar 

  22. D. A. Ivliev, “The effects of microinjection of atropine into the motor cortex of the rat on the acquisition of a motor habit,” Zh. Vyssh. Nerv. Deyat., 48,No. 3, 478–484 (1998).

    Google Scholar 

  23. M. E. Ioffe, “The role of the motor analyzer nucleus in performing local food-related motor conditioned reflexes in dogs,” Dokl. Akad. Nauk SSSR, 139,No. 1, 242–244 (1961).

    Google Scholar 

  24. M. E. Ioffe, Corticospinal Mechanisms of Operant Conditioned Reflexes [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  25. M. E. Ioffe, Mechanisms of Motor Learning [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  26. I. B. Kozlovskaya, Afferent Control of Voluntary Movements [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  27. Yu. Konorski, Integrative Brain Activity [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  28. U. Konorski and S. Miller, “Conditioned reflexes of the motor analyzer,” in: Physiological Studies of I P. Pavlov [in Russian] (1936), Vol. 6,No. 1, 119–278.

    Google Scholar 

  29. M. F. Koryakin, Studies of the Composition of a Conditioned Defensive Motor Reflex in Dogs [in Russian], Author's abstract of thesis for doctorate in medical sciences, Moscow Medical Institute, Moscow (1960).

    Google Scholar 

  30. B. I. Kotlyar, V. I. Maiorov, N. O. Timofeeva, and V. V. Shul'govskii, The Neuronal Organization of Conditioned Reflex Behavior [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  31. R. Krid, D. Benni-Broun, I. Ikkls, et al., Reflex Activity of the Spinal Cord [in Russian], Biomedgiz, Moscow, Leningrad (1935).

    Google Scholar 

  32. R. Magnus, The Body [in Russian], Nauka, Moscow (1962).

    Google Scholar 

  33. V. I. Maiorov, “NMDA-dependent and NMDA-independent neuronal processes in the activity of the bicuculline-disinhibited cat cortex during acquisition and reproduction of a conditioned paw-placing reflex,” Zh. Vyssh. Nerv. Deyat., 52,No. 2, 205–212 (2002).

    Google Scholar 

  34. V. I. Maiorov, “Blockade of dopamine D1 receptors in the cat motor cortex induces increases in the latent period of a conditioned forepaw-placing reflex,” Zh. Vyssh. Nerv. Deyat., 53,No. 1, (2003).

  35. V. I. Maiorov and A. A. Moskvitin, “Long-term potentiation of the late NMDA-dependent component of cat motor cortex neuron responses to stimulation of the direct cortical input from field 5 of the parietal cortex,” Zh. Vyssh. Nerv. Deyat., 49,No. 2, 279–286 (1999).

    Google Scholar 

  36. V. I. Maiorov, E. I. Savchenko, and B. I. Kotlyar, “Transformation of the afferent tactile signal into a motor command in the cat motor cortex,” Neirofiziologiya, 9,No. 2, 115–123 (1977).

    Google Scholar 

  37. V. I. Maiorov and G. G. Khludova, “Responses of cat motor cortex neurons to electrical stimulation of the ventral part of the midbrain tegmentum as a conditioned signal for a forepaw-placing reflex,” Zh. Vyssh. Nerv. Deyat., 49,No. 3, 400–407 (1999).

    Google Scholar 

  38. V. I. Maiorov, B. V. Chernyshov, and A. A. Moskvitin, “The effects of 2-amino-5-phosphopentanoic acid (AP5), a blocker of glutamate NMDA receptors, on neuron activity in the cat motor cortex during performance of a conditioned paw-placing reflex,” Zh. Vyssh. Nerv. Deyat., 47,No. 4, 672–679 (1997).

    Google Scholar 

  39. V. N. Mats and O. K. Segal, “The effects of acquisition of a local motor-feed-related conditioned reflex and remodeling of its effector component on protein levels in rat motor cortex neurons,” Izv. Akad. Nauk SSSR Ser. Biol., No. 6, 888–895 (1979).

    Google Scholar 

  40. N. N. Nalivaeva, S. A. Plesneva, U. B. Chekulaeva, et al., “Some biochemical characteristics of the sensorimotor cortex of right-handed, left-handed, and ambidextrous rats,” Zh. Évolyuts. Fiziol. Biokhim., 32,No. 1, 75–81 (1996).

    Google Scholar 

  41. A. V. Ovsyannikov, The Effects of Joint and Posterior Root Deafferentation on Motor Defensive Conditioned Reflexes with Different Levels of Accuracy [in Russian], Author's abstract of thesis for doctorate in medical sciences, Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow (1967).

    Google Scholar 

  42. L. A. Orbeli, Lectures on the Physiology of the Nervous System [in Russian], Moscow, Leningrad (1938).

  43. I. P. Pavlov, Complete Collected Works [in Russian], Vol. 3, Book 1 (1951).

  44. O. G. Pavlova, N. P. Balezina, and M. E. Ioffe, “Impairments of an acquired coordination after lesioning of the parietal and premotor associative areas in dogs,” Zh. Vyssh. Nerv. Deyat., 36,No. 3, 450–459 (1986).

    Google Scholar 

  45. O. G. Pavlova, A. G. Frolov, and A. V. Aleksandrov, “A natural coordination of head and paw movements in dogs and its remodeling during learning,” Zh. Vyssh. Nerv. Deyat., 51,No. 1, 40–51 (2001).

    Google Scholar 

  46. N. V. Petropavlovskii, “A method for conditioned muscle tone and experiments on its extinction,” Mediko-Biol. Zh., 3,No. 2, 43–58 (1927).

    Google Scholar 

  47. E. I. Plonskaya, “The state of the cortical end of the kinesthetic analyzer at the moment of excitation of the food center,” Tr. Inst. Vyssh. Nerv. Deyat. Ser. Fiziol., 2, 95–101 (1956).

    Google Scholar 

  48. V. P. Protopopov, Linked Motor Responses to Sound Stimuli [in Russian], Dissertation, St. Petersburg (1909).

  49. M. I. Samoilov, “The question of the effect of extirpation of the cortical end of the motor analyzer on conditioned motor defensive reflexes,” Tr. Inst. Vyssh. Nerv. Deyat. Ser. Fiziol., 6, 58–67 (1961).

    Google Scholar 

  50. I.M. Sechenov, Brain Reflexes [in Russian], Academy of Sciences of the USSR Press, Moscow (1961).

    Google Scholar 

  51. I. G. Sil'kis, S. Sh. Rapoport, N. V. Veber, and A. M. Gushchin, “Long-term homosynaptic depression of the spike responses of motor cortex neurons,” Zh. Vyssh. Nerv. Deyat., 43,No. 5, 925–935 (1993).

    Google Scholar 

  52. G. V. Skipin, “The physiological mechanisms underlying the formation of defensive conditioned reflexes,” Zh. Vyssh. Nerv. Deyat., 7,No. 6, 877–888 (1957).

    Google Scholar 

  53. I. Stempen', L. Stempen', and Yu. Knonorskii, “Motor conditioned reflexes (type II) after extirpation of the sensorimotor area of the dog cortex,” in: Central and Peripheral Activity of Animals [in Russian], Academy of Medical Sciences of the USSR Press, Moscow (1960), pp. 266–277.

    Google Scholar 

  54. N. I. Stul', “Analysis of conditioned reflex transformation of a motor response,” Zh. Vyssh. Nerv. Deyat., 20,No. 5, 941–946 (1970).

    Google Scholar 

  55. K. I. Ustinova, L. A. Chernikova, M. E. Ioffe, and S. S. Sliva, “Impairment of learning of voluntary posture control in cortical lesions of various locations: the question of the cortical mechanisms of posture regulation,” Zh. Vyssh. Nerv. Deyat., 50,No. 3, 421–433 (2000).

    Google Scholar 

  56. Yu. M. Uflyand, Physiology of the Human Motor Apparatus [in Russian], Meditsina, Moscow (1965).

    Google Scholar 

  57. A. A. Ukhtomskii, “The relationship between the cortical motor effects and lateral central effects,” in: Collected Works [in Russian], Leningrad State University, Leningrad (1950), Vol. 1, pp. 31–62.

    Google Scholar 

  58. V. V. Fanardzhyan and D. Sarkisyan, “Intracellular studies of the formation of new synapses and collateral sprouting in neurons of the red nucleus after lesioning of the intermediate nucleus of the cerebellum,” Fiziol. Zh. SSSR, 73, 163–172 (1987).

    Google Scholar 

  59. B. I. Khodorov, “The conditioned reflex mechanism of rearrangement of coordination relationships in tendon-muscle transplants in humans,” in: Proceedings of the IV Scientific Congress of the TsNIIPP [in Russian], Moscow (1955), pp. 45–60.

  60. B. V. Chernyshev, V. I. Maiorov, and A. A. Moskvitin, “Facilitation and suppression in conditions of iontophoretic application of acetylcholine on different components of the responses of neurons in the cat motor cortex during performance of a conditioned paw-placing reflex,” Zh. Vyssh. Nerv. Deyat., 48,No. 1, 99–112 (1998).

    Google Scholar 

  61. N. M. Shamarina, “The rearrangement of innervation relationships in the central nervous system induced by transplantation of antagonist muscles,” Fiziol. Zh. SSSR, 44,No. 11, 1040–1048 (1958).

    Google Scholar 

  62. K. B. Shapovalova, “Current concepts of the neuromorphology and neurochemistry of the cholinergic system of the striatum and its role in the control of movement,” Zh. Vyssh. Nerv. Deyat., 46,No. 4, 656–573 (1996).

    Google Scholar 

  63. K. B. Shapovalova, “The cholinergic system of the striatum: involvement in the motor and sensory components of motor behavior,” Zh. Vyssh. Nerv. Deyat., 47,No. 2, 393–411 (1997).

    Google Scholar 

  64. K. B. Shapovalova, “Brain receptors in the neostriatum — involvement in the regulation of operant behavior in dogs,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86,No. 11, 1404–1417 (2000).

    Google Scholar 

  65. N. A. Shenk, Functional Training of Bilateral Arm Amputees [in Russian], Medgiz, Sverdlovsk (1946).

    Google Scholar 

  66. C. Sherrington, Integrative Activity of the Nervous System [Russian translation], Nauka, Leningrad (1969).

    Google Scholar 

  67. V. B. Shvyrkov, “Systems determination of neuron activity in behavior,” Usp. Fiziol. Nauk., 14,No. 1, 45–66 (1983).

    Google Scholar 

  68. A. I. Shumilina, “Involvement of the pyramidal and extrapyramidal systems in motor activity in deafferentated limbs,” in: Questions of Higher Nervous Activity [in Russian], Academy of Medical Sciences of the USSR Press, Moscow (1949), pp. 196–207.

    Google Scholar 

  69. D. Albus, “A theory of cerebellar function,” Math. Biosci., 10,No. 1, 25–61 (1971).

    Google Scholar 

  70. G. J. Allen and N. Tsukahara, “Cerebrocerebellar communication system,” Physiol. Rev., 54,No. 4, 957–1006 (1974).

    Google Scholar 

  71. T. J. Anastasio, “Neurobiological basis of motor learning in mammals,” Neuroreport, 12,No. 17, 3825–3831 (2001).

    Google Scholar 

  72. H. Asanuma, The Motor Cortex, Plenum, New York (1989).

    Google Scholar 

  73. H. Asanuma and C. Pavlides, “Neurobiological basis of motor learning in animals,” Neuroreport, 8,No. 4 (1997).

    Google Scholar 

  74. N. P. Azari, K. M. Stephan, U. Knorr, and R. J. Seitz, “Brain functional interactions during spatial bimanual coordination,” in: Abstracts of the 5th International Conference on Functional Mapping of the Human Brain, Academic Press (1999).

  75. S. N. Baker, E. Oliver, and R. N. Lemon, “Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation,” J. Physiol., 501,No. 1, 225–241 (1997).

    Google Scholar 

  76. S. N. Baker, R. Sparks, A. Jackson, and R. Lemon, “Synchronization in monkey motor cortex during a precision grip task. 1. Task-dependent modulation in single-unit synchrony,” J. Neurophysiol., 85, 869–885 (2001).

    Google Scholar 

  77. A. Baranyi and O. Feher, “Conditioned changes of synaptic transmission in the motor cortex of the cat,” Exp. Brain Res., 33, 283–298 (1978).

    Google Scholar 

  78. A. Berardelli, M. Inghilleri, J. C. Rothwell, et al., “Facilitation of muscle evoked responses after repetitive cortical stimulation in man,” Exp. Brain Res., 122, 79–84 (1998).

    Google Scholar 

  79. A. Bethe and E. Fischer, “Die Anpassungfahigkeit (Plastizitat) des Nervensystems,” in: Handbuch der Normalen und Pathologischen Physiologie [in German], A. von Bethe et al. (eds.), Springer, Berlin (1931), Vol. 15, pp. 1045–1130.

    Google Scholar 

  80. E. V. Birjukova, M. Dufosse, A. A. Frolov, et al., “Role of the sensorimotor cortex in postural adjustment accompanying a conditioned paw lift in the standing cat,” Exp. Brain Res., 78, 588–596 (1989).

    Google Scholar 

  81. T. V. P. Bliss and T. Lomo, “Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” J. Physiol., 232,No. 2, 351–356 (1973).

    Google Scholar 

  82. T. Brashers-Krug, R. Shadmehr, and E. Bizzi, “Consolidation in human motor memory,” Nature, 382, 252–255 (1996).

    Google Scholar 

  83. V. Brooks, “Some new experiments on cerebellar motor control,” EEG Clin. Neurophysiol., Suppl. 31, 109–116 (1972).

    Google Scholar 

  84. E. J. Buys, R. N. Lemon, G. W. Mantel, and R. B. Muir, “Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey,” J. Physiol., 381, 529–549 (1986).

    Google Scholar 

  85. J. P. Brasil-Neto, L. G. Cohen, A. Pascual-Leone, et al., “Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation,” Neurology, 42, 1302–1306 (1992).

    Google Scholar 

  86. G. S. Brindley, “Nerve net models of plausible size that perform many simple learning tasks,” Proc. Roy. Soc. Ser. B., 174,No. 35, 173–191 (1969).

    Google Scholar 

  87. R. G. Carson, S. Riek, C. J. Smethurst, et al., “Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination,” Exp. Brain Res., 131,No. 2, 196–214 (2000).

    Google Scholar 

  88. J. Classen and R. Benecke, “Inhibitory phenomena in individual motor units induced by transcranial magnetic stimulation,” EEG Clin. Neurophysiol., 97,No. 5, 264–274 (1995).

    Google Scholar 

  89. J. Classen, J. Liepert, S. Wise, et al., “Rapid plasticity of human cortical movement representation induced by practice,” J. Neurophysiol., 79, 1117–1123 (1998).

    Google Scholar 

  90. L. G. Cohen, S. Bandinelli, T. W. Findley, and M. Hallett, “Motor reorganization after upper limb amputation in man,” Brain, 114, 615–627 (1991).

    Google Scholar 

  91. F. Debaere, S. P. Swinnen, E. Beatse, et al., “Brain areas involved in interlimb coordination: a distributed network,” Neuroimage, 14,No. 5, 947–958 (2001).

    Google Scholar 

  92. M. P. Deiber, V. Ibanez, M. Honda, et al., “Cerebral processes related to visuomotor imagery and generation of simple finger movements studies with positron emission tomography,” Neuroimage, 7,No. 2, 73–85 (1998).

    Google Scholar 

  93. A. M. De Noordhout, G. Rapisarda, D. Bogazc, et al., “Corticomotoneuronal synaptic connections in normal man: an electrophysiological study,” Brain, 122,No. 7, 1327–1340 (1999).

    Google Scholar 

  94. M. Dufosse, M. Hugon, and J. Massion, “Postural forearm changes induced by predictable in time or voluntary triggered unloading in man,” Exp. Brain Res., 60, 330–334 (1985).

    Google Scholar 

  95. T. V. Dunwiddie and G. Lynch, “The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation,” Brain Res., 169,No. 1, 103–110 (1979).

    Google Scholar 

  96. J. C. Eliassen, J. T. Baker, G. Bonynge, et al., “Cortical timing and activation patterns during spatial conditional motor learning,” Soc. Neurosci. Abstr., 24 (1999).

  97. E. V. Evarts, “Relation of discharge frequency to conduction velocity in pyramidal tract neurons,” J. Neurophysiol., 28, 216–228 (1965).

    Google Scholar 

  98. E. V. Evarts, “Role of motor cortex in voluntary movement in primates,” in: Handbook of Physiology. The Nervous System. Motor Control, J. M. Brookhart et al. (eds.), American Physiological Society, Bethesda, MA (1981), Vol. 2, 1083–1120.

    Google Scholar 

  99. E. V. Evarts, Y. Shinoda, and S. P. Wise, Neurophysiological Approaches to Higher Brain Functions, Wiley, New York (1984).

    Google Scholar 

  100. E. V. Evarts and J. Tanji, “Gating of motor cortex reflexes by prior instruction,” Brain Res., 71, 479–494 (1974).

    Google Scholar 

  101. M. Fabre and P. Buser, “Structures involved in acquisition and performance of visually guided movements as the cat,” Acta Neurobiol. Exp., 40, 95–116 (1980).

    Google Scholar 

  102. E. E. Fetz, P. D. Cheney, K. Mewes, and S. Palmer, “Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells,” Prog. Brain. Res., 80, 437–449 (1989).

    Google Scholar 

  103. O. Foerster, “De-und Regeneration des peripheren Nervensystems; Klinisches; Restitution der Motilitat; Restitution der Sensibilitat,” Dtsch. Z. Nervenheikunde, 115, 248–314 (1930).

    Google Scholar 

  104. R. J. Fontaine, T. D. Lee, and S. P. Swinnen. “Learning a new bimanual coordination pattern: reciprocal influences of intrinsic and to-be-learned patterns,” Can. J. Exp. Psychol., 51,No. 1, 1–9 (1997).

    Google Scholar 

  105. A. G. Frolov, “The effect of instrumentalization of inborn reaction on its transformation into contrary directed escape response in dogs and the problem of reinforcement,” Acta Neurobiol. Exp., 43, 1–14 (1983).

    Google Scholar 

  106. F. Gandolfo, C. Li, B. J. Benda, et al., “Cortical correlates of learning in monkeys adapting to a new dynamical environment,” Proc. Natl. Acad. Sci. USA, 97,No. 5, 2259–2263 (2000).

    Google Scholar 

  107. P. Glees and J. Cole, “Recovery of skilled motor functions after small repeated lesions of motor cortex in macaque,” J. Neurophysiol., 13,No. 2, 137–148 (1950).

    Google Scholar 

  108. M. A. Gluck, M. T. Allen, C. E. Myers, and R. F. Thompson, “Cerebellar substrates for error correction in motor conditioning,” Neurobiol. Learn. Mem., 76,No. 3, 314–341 (2001).

    Google Scholar 

  109. G. W. Goerres, M. Samuel, J. H. Jenkins, and D. J. Brooks, “Cerebral control of unimanual and bimanual movements: an H2(15)O PET study,” Neuroreport, 9,No. 16, 3631–3638 (1998).

    Google Scholar 

  110. E. J. Hall, D. Flament, C. Fraser, and R. N. Lemon, “Non-invasive brain stimulation reveals reorganised cortical outputs in amputees,” Neurosci. Lett., 116, 379–386 (1990).

    Google Scholar 

  111. M. Hallett, “Plasticity of the human motor cortex and recovery from stroke,” Brain Res. Rev., 36,No. 2/3, 169–174 (2001).

    Google Scholar 

  112. W. Hauber, “Involvement of basal ganglia transmitter systems in movement initiation,” Progr. Neurobiol., 56, 507–540 (1998).

    Google Scholar 

  113. T. Hasbroucq, A. Osman, C. A. Possamae, et al., “Corticospinal inhibition reflects time but not event preparation: neural mechanisms of preparation dissociated by transcranial magnetic stimulation,” Acta Psychol. (Amsterdam), 101,No. 2–3, 243–266 (1999).

    Google Scholar 

  114. D. Hebb, The Organization of Behaviour, Wiley, New York (1949).

    Google Scholar 

  115. G. Hess and J. P. Donoghue, “Long-term potentiation and long-term depression of horizontal connections in rat motor cortex,” Acta Neurobiol. Exp., 56, 397–405 (1996).

    Google Scholar 

  116. G. Hess and J. P. Donoghue, “Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: route of effect and cholinergic contributions,” Exp. Brain Res., 127, 279–290 (1999).

    Google Scholar 

  117. O. Hikosaka, Y. Tarikawa, and R. Kawagoe, “Role of the basal ganglia in the control of purposive saccadic eye movements,” Physiol. Rev., 80,No. 3, 953–978 (2000).

    Google Scholar 

  118. M. Honda, M. P. Deiber, V. Ibanez, et al., “Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study,” Brain, 121,No. 2, 2159–2173 (1998).

    Google Scholar 

  119. J. C. Houk, “Neurophysiology of frontal-subcortical loops,” in: Frontal-Subcortical Circuits in Psychiatry and Neurology, D. G. Lichter and J. L. Cammings (eds.), Guildford Publishers, New York (2001), pp. 92–113.

    Google Scholar 

  120. D. H. Hubel, “Single unit activity in the striate cortex of unrestrained cats,” J. Physiol. (London), 147, 226–238 (1959).

    Google Scholar 

  121. D. R. Humphrey, “Relating motor cortex spike trains to measures of motor performance,” Brain Res., 40, 7–18 (1972).

    Google Scholar 

  122. G. W. Huntley, “Correlation between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex,” Cereb. Cortex, 7, 143–156 (1997).

    Google Scholar 

  123. M. I. Ioffe, “Pyramidal influences in establishment of new motor coordinations in dogs,” Physiol. Behav., 11,No. 2, 145–153 (1973).

    Google Scholar 

  124. M. E. Ioffe, “What is the specificity of the motor cortex in motor learning?” in: Motor Control, Today and Tomorrow, G. N. Gantchev, S. Mori, and J. Massion (eds.), Academic Press, Sofia (1999), pp. 123–137.

    Google Scholar 

  125. M. E. Ioffe, “The motor cortex inhibits synergies interfering with a learned movement: reorganization of postural coordination in dogs,” in: Conceptual Advances in Russian Neuroscience, R. Millar et al. (eds.), Harwood Academic Press, New York (2000), pp. 289–300.

    Google Scholar 

  126. M. E. Ioffe, N. G. Ivanova, A. A. Frolov, et al., “On the role of motor cortex in the learned rearrangement of postural coordinations,” in: Stance and Motion, Facts and Concepts, V. S. Gurfinkel et al. (eds.), Plenum, New York, London (1988), pp. 213–226.

    Google Scholar 

  127. M. Ioffe, J. Massion, C. Schmitz, et al., “Reorganization of motor patterns during motor learning: a specific role of the motor cortex,” in: Progress in Motor Control II, M. L. Latash (ed.), Human Kinetics, Champaigne, Illinois (2002), pp. 123–146.

    Google Scholar 

  128. M. E. Ioffe, O. N. Vasilyeva, N. P. Balezina, et al., “On the role of the nucleus interpositus in motor learning after dentate lesions in dogs,” in: Motor Control VII, D. Stuart (ed.), Motor Control Press, Tucson, Arizona (1996), pp. 181–182.

    Google Scholar 

  129. A. Iriki, C. Pavlides, A. Keller, and H. Asanuma, “Long-term potentiation in the motor cortex,” Science, 245,No. 4924, 1385–1387 (1989).

    Google Scholar 

  130. M. Ito, The Cerebellum and Motor Control, Raven Press, New York (1984).

    Google Scholar 

  131. M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain Res., 886,No. 1–2, 237–245 (2000).

    Google Scholar 

  132. J. H. Jackson, Selected Writings of John Hughlings Jackson, J. Taylor (ed.), Hodder and Stoughton, London (1931).

    Google Scholar 

  133. K. M. Jacobs and J. P. Donoghue, “Reshaping the cortical motor map by unmasking latent intracortical connections,” Science, 251, 944–947 (1991).

    Google Scholar 

  134. C. F. Jacobsen, “Influence of motor and premotor area lesions upon the retention of acquired skilled movements in monkeys and chimpanzees,” Res. Publ. Ass. Nerv. Ment. Dis., 13, 225–247 (1934).

    Google Scholar 

  135. E. Jankovska and R. Tanaka, “Neuronal mechanism of the disynaptic inhibition evoked in primate spinal motoneurones from the corticospinal tract,” Brain Res., 75, 163–166 (1974).

    Google Scholar 

  136. H. H. Jasper, “Recent advances in our understanding of ascending activities of the reticular system,” in: Reticular Formation of the Brain, Little Brown, Boston (1958), pp. 423–434.

    Google Scholar 

  137. O. Kalischer, “Uber die Bedeutung des Stirnteils des Grosshirns fur die Fresstondressur,” Zbl. Physiol., 24, 716–718 (1910).

    Google Scholar 

  138. A. Karni, G. Meyer, C. Rey-Hipolito, et al., “The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex,” Proc. Natl. Acad. Sci. USA, 95, 861–868 (1998).

    Google Scholar 

  139. A. Keller, K. Arissian, and H. Asanuma, “Formation of new synapses in the cat motor cortex following lesions of the deep cerebellar nuclei,” Exp Brain Res., 80,No. 1, 23–33 (1990).

    Google Scholar 

  140. J. A. S. Klelso, “The informational character of self-organized coordination dynamics,” Human Move. Sci., 13, 393–413 (1994).

    Google Scholar 

  141. J. A. Keim, S. Barbay, and R. J. Nudo, “Functional reorganization of the rat motor cortex following motor skill learning,” J. Neurophysiol., 80, 3321–3325 (1998).

    Google Scholar 

  142. J. A. Kleim, S. Barbay, N. R. Cooper, et al., “Motor learning dependent synaptogenesis is localized to functionally reorganized motor cortex,” Neurobiol. Learn. Mem., 77, 63–77 (2002).

    Google Scholar 

  143. J. A. Kleim, E. Lissing, E. R. Schwartz, and W. T. Greenough, “Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning,” J. Neurosci., 16, 4529–4535 (1996).

    Google Scholar 

  144. H. H. Kornhuber, “Cerebral cortex, cerebellum and basal ganglia: an introduction to their motor functions,” in: The Neuroscience, F. O. Schmitt and F. G. Worden (eds.), MIT Press, Cambridge (1974), pp. 267–280.

    Google Scholar 

  145. S. Landgren, C. G. Phillips, and R. Porter, “Minimal synaptic actions of pyramidal impulses on some alpha-motoneurones of the baboon's hand and forearm,” J. Physiol., 161, 91–111 (1962).

    Google Scholar 

  146. R. Lange, M. Nitschke, U. Melchert, et al., “Activity pattern in cortical motor-associated areas in mirror writing,” in: Abstracts of the 5th International Conference on Functional Mapping of the Human Brain, Academic Press (1999), p. 435.

  147. K. S. Lashley, The Neurophysiology of Lashley, F. A. Beach et al., (eds.), McGraw-Hill Book Comp., New York (1960).

    Google Scholar 

  148. O. Lehmann, H. Jeltsch, O. Lehnardt, et al., “Combined lesions of cholinergic and serotonergic neurons in the rat brain using 192 IgG-saponin and 5,7-dihydroxytryptamine: neurochemical and behavioral characterization,” Eur. J. Neurosci., 12,No. 1, 67–79 (2000).

    Google Scholar 

  149. A. S. F. Leyton and C. S. Sherrington, “Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla,” Quart. J. Exp. Physiol., 11, 135–222 (1917).

    Google Scholar 

  150. J. Liepert, M. Tegenthoff, and J. P. Malin, “Changes of cortical motor area size during immobilization,” EEG Clin. Neurophysiol., 97, 382–386 (1995).

    Google Scholar 

  151. J. Liepert, C. Terborg, and C. Weller, “Motor plasticity induced by synchronized thumb and foot movements,” Exp. Brain Res., 125, 435–439 (1999).

    Google Scholar 

  152. G. Lynch, M. Browning, and W. F. Bennett, “Biochemical and physiological studies of long-term synaptic plasticity,” Fed. Proc., 38,No. 7, 2117–2122 (1979).

    Google Scholar 

  153. D. Marr, “A theory of cerebellar cortex,” J. Physiol., 202, 437–470 (1969).

    Google Scholar 

  154. J. P. Martin, The Basal Ganglia and Posture, Pitman, London (1967).

    Google Scholar 

  155. J. Massion, “Role of the motor cortex in the postural adjustment associated with movements,” in: Integration in the Nervous System, H. Asanuma and V. J. Wilson (eds.), Igaku-Shoin, Tokyo (1979), pp. 239–260.

    Google Scholar 

  156. J. Massion, “Red nucleus: past and future,” Behav. Brain Res., 28, 108 (1988).

    Google Scholar 

  157. J. Massion, M. Ioffe, C. Schmitz, et al., “Acquisition of anticipatory postural adjustments in a bimanual load lifting task: normal and pathological aspects,” Exp. Brain Res., 128,No. 1, 229–235 (1999).

    Google Scholar 

  158. B. J. McKiernan, J. K. Marcario, J. H. Karrer, and P. D. Cheney, “Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task,” J. Neurophysiol., 80, 1961–1980 (1998).

    Google Scholar 

  159. W. Muellbacher, U. Ziemann, B. Boroojerdi, et al., “Role of the human motor cortex in rapid motor learning,” Exp. Brain Res., 136, 431–438 (2001).

    Google Scholar 

  160. W. Muellbacher, U. Ziemann, J. Wissel, et al., “Early consolidation in human motor cortex,” Nature, 712, 1–4 (2002).

    Google Scholar 

  161. J. Nielsen and N. Petersen, “Evidence favouring different descending pathways to soleus motoneurons activated by magnetic brain stimulation in man,” J. Physiol., 486,No. 3, 779–788 (1995).

    Google Scholar 

  162. R. J. Nudo, W. M. Jenkins, and M. M. Merzenich, “Repetitive micro-stimulation alters the cortical representation of movements in adult rats,” Somatosens. Motor Res., 7, 463–483 (1990).

    Google Scholar 

  163. R. J. Nudo, G. W. Milliken, W. M. Jenkins, and M. M. Merzenich, “Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys,” J. Neurosci., 16, 785–807 (1996).

    Google Scholar 

  164. S. Obayashi, T. Suhara, K. Kawabe, et al., “Functional brain mapping of monkey tool use,” Neuroimage, 14,No. 4, 853–861 (2001).

    Google Scholar 

  165. A. Pascual-Leone and F. Torres, “Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers,” Brain, 116, 39–52 (1993).

    Google Scholar 

  166. A. Pascual-Leone, D. Nguyet, L. G. Cohen, et al., “Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills,” J. Neurophysiol., 74, 1037–1045 (1995).

    Google Scholar 

  167. Y. Paulignan, M. Dufosse, M. Hugon, and J. Massion, “Acquisition of coordination between posture and movement in a bimanual task,” Exp. Brain Res., 77, 337–348 (1989).

    Google Scholar 

  168. A. J. Pearce, G. W. Thickbroom, M. L. Byrnes, and F. L. Mastaglia, “Functional reorganization of the corticomotor projection in terms of the hand in skilled racquet players,” Exp. Brain Res., 130, 238–243 (2000).

    Google Scholar 

  169. C. E. Peper and P. J. Beek, “Are frequency-induced transitions in rhythmic coordination mediated by a drop in amplitude?” Biol. Cybern., 79,No. 4, 291–300 (1998).

    Google Scholar 

  170. C. G. Phillips and R. Porter, Corticospinal Neurones, Academic Press, New York, London (1977).

    Google Scholar 

  171. A. Pisani, P. Bonsi, B. Picconi, et al., “Role of tonically active neurons in the control of striatal function: cerebellar mechanisms and behavioral correlates,” Neuropsychopharmacol. Biol. Psychiatry, 25,No. 1, 211–230 (2001).

    Google Scholar 

  172. E. J. Plautz, G. W. Milliken, and R. J. Nudo, “Effects of repetitive moor training of movement representations in adult squirrel monkeys: role of use versus learning,” Neurobiol. Learn. Mem., 74, 27–55 (2000).

    Google Scholar 

  173. J. B. Preston and D. G. Whitlock, “Precentral facilitation and inhibition of spinal motoneurones,” J. Neurophysiol., 23, 154–170 (1960).

    Google Scholar 

  174. X. Q. Qui, D. L. O'Donoghue, and D. R. Humphrey, “NMDA-antagonist (MK-801) blocks plasticity of motor cortex maps induced by passive limb movement,” Abstr. Soc. Neurosci., 16, 422 (1990).

    Google Scholar 

  175. N. Ramnani and R. E. Passingham, “Changes in the human brain during rhythm learning,” J. Cogn. Neurosci., 13,No. 7, 952–966 (2001).

    Google Scholar 

  176. P. Redgrave, T. J. Prescott, and K. Gurney, “The basal ganglia: a vertebrate solution to the selection problem,” Neurosci., 89,No. 4, 1009–1023 (1999).

    Google Scholar 

  177. M. S. Rioult-Pedotti, D. Friedman, G. Hess, and J. P. Donoghue, “Strengthening of horizontal cortical connections following skill learning,” Nat. Neurosci., 1,No. 3, 230–234 (1998).

    Google Scholar 

  178. K. Rosenkranz, M. A. Nitsche, F. Tergau, and W. Paulus, “Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human,” Neurosci. Lett., 296,No. 1, 61–63 (2000).

    Google Scholar 

  179. N. Sadato, V. Ibanez, M.-P. Deiber, et al., “Frequency-dependent changes of regional blood flow during finger movements,” J. Cereb. Blood Flow Metab., 16, 23–33 (1996).

    Google Scholar 

  180. J. N. Sanes and J. P. Donoghue, “Dynamic motor cortical organization,” Neurosci., 3, 158–165 (1997).

    Google Scholar 

  181. J. N. Sanes and J. P. Donoghue, “Plasticity and primary motor cortex,” Ann. Rev. Neurosci., 23, 393–415 (2000).

    Google Scholar 

  182. J. N. Sanes, S. Suner, and J. P. Donoghue, “Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions,” Exp. Brain Res., 79, 479–491 (1990).

    Google Scholar 

  183. J. N. Sanes, J. Wang, and J. P. Donoghue, “Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations,” Cereb. Cortex, 2, 141–152 (1992).

    Google Scholar 

  184. K. Sasaki and H. Gemba, “Development and change of cortical field potentials during learning processes of visually initiated hand movements in the monkey,” Exp. Brain Res., 48, 429–437 (1982).

    Google Scholar 

  185. M. H. Schieber, “Constraints on somatotopic organization in the primary motor cortex,” J. Neurophysiol., 86, 2125–2143 (2001).

    Google Scholar 

  186. W. Schultz, “Predictive reward signal of dopamine neurons,” J. Neurophysiol., 80, 1–27 (1998).

    Google Scholar 

  187. R. J. Seitz, A. G. Canavan, L. Yaguez, et al., “Successive roles of the cerebellum and premotor cortices in trajectorial learning,” Neuroreport, 5,No. 18, 2541–2544 (1994).

    Google Scholar 

  188. R. Shadmehr and H. H. Holcomb, “Neural correlates of motor memory consolidation,” Science, 277, 821–825 (1997).

    Google Scholar 

  189. B. F. Skinner, The Behavior of Organisms: an Experimental Study, Appleton-Century-Crofts, New York (1938).

    Google Scholar 

  190. R. W. Sperry, “The eye and the brain,” Sci. Amer., 194,No. 5, 48–52 (1956).

    Google Scholar 

  191. R. W. Sperry, “The growth of the nerve circuits,” Sci. Amer., 201, 68–75 (1959).

    Google Scholar 

  192. A. P. Strafella and T. Paus, “Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex,” J. Neurophysiol., 85,No. 6, 2624–2629 (2001).

    Google Scholar 

  193. S. Suner, D. Gutman, G. Gaal, et al., “Reorganization of monkey motor cortex related to motor skill learning,” Soc. Neurosci. Abstr., 19, 775 (1993).

    Google Scholar 

  194. S. P. Swinnen, N. Dounskaia, O. Levin, and J. Duyssens, “Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements,” Behav. Brain Res., 123,No. 2, 201–218 (2001).

    Google Scholar 

  195. S. P. Swinnen, C. B. Walter, T. D. Lee, and D. J. Serrien, “Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling,” J. Exp. Psychol. Learn. Mem. Cogn., 19,No. 6, 1328–1344 (1993).

    Google Scholar 

  196. R. F. Thompson, “The neurobiology of learning and memory,” Science, 233, 941–947 (1986).

    Google Scholar 

  197. E. L. Thorndike, Animal Intelligence: Experimental Studies, MacMillan, New York (1911).

    Google Scholar 

  198. H. Topka, L. G. Cohen, R. A. Cole, and M. Hallett, “Reorganization of corticospinal pathways following spinal cord injury,” Neurology, 41, 1276–1283 (1991).

    Google Scholar 

  199. A. M. Travis, “Neurological deficiencies after ablation of the precentral motor area in Macaca mulatta,” Brain, 78, 155–173 (1955).

    Google Scholar 

  200. N. Tsukuhara, “Sprouting and the neuronal basis of classical conditioning,” in: Perspectives in Neuroscience. From Molecule to Mind, Y. Tsukada (ed.), Tokyo University Press, Tokyo (1985), pp. 207–218.

    Google Scholar 

  201. O. Vajnerova, I. A. Zhuravin, and G. Brozek, “Functional ablation of deep cerebellar nuclei temporarily impairs learned coordination of forepaw and tongue movements,” Behav. Brain Res., 108,No. 2, 189–195 (2000).

    Google Scholar 

  202. H. Van Mier, L. W. Tempel, J. S. Perlmutter, et al., “Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice,” J. Neurophysiol., 80, 2177–2199 (1998).

    Google Scholar 

  203. P. Weiss, “Self-differentiation of the basic patterns of coordination,” Comp. Psychol. Monogr., 17, 1–96 (1941).

    Google Scholar 

  204. D. A. Wilson and R. J. Racine, “The postnatal development of post-activation potentiation in the rat neocortex,” Dev. Brain Res., 7,No. 2/3, 271–276 (1983).

    Google Scholar 

  205. C. N. Woolsey, “Organization of somatic sensory and motor areas of the cerebral cortex,” in: Biological and Biochemical Bases of Behavior, H. F. Harlow and C. N. Woolsey (eds.), University of Wisconsin Press, Madison (1958), pp. 63–81.

    Google Scholar 

  206. U. Ziemann, M. Hallett, and L. G. Cohen, “Mechanisms of deafferentation-induced plasticity in human motor cortex,” J. Neurosci., 18, 7000–7007 (1998).

    Google Scholar 

  207. U. Ziemann, W. Muellbacher, M. Hallett, and L. G. Cohen, “Modulation of practice-dependent plasticity in human motor cortex,” Brain, 124,No. 6, 1171–1181 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, M.E. Brain Mechanisms for the Formation of New Movements during Learning: The Evolution of Classical Concepts. Neurosci Behav Physiol 34, 5–18 (2004). https://doi.org/10.1023/B:NEAB.0000003241.12053.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000003241.12053.47

Navigation