Skip to main content
Log in

Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Photocatalytic activity of CdS nanoparticles in hydrosulfide-ions air oxidation was revealed and thoroughly investigated. HS photooxidation in the presence of CdS nanoparticles results predominantly in the formation of SO3 2− and SO4 2− ions. Photocatalytic activity of ultrasmall CdS crystallites in HS photooxidation is much more prononced as compared to bulk CdS crystals due to high surface area of nanoparticles, their negligible light scattering, improved separation of photogenerated charge carriers etc. It was shown that hydrosulfide ions can be oxidized in two ways. The first is HS oxidation by the CdS valence band holes. This process rate depends on the rate of comparatively slow reaction between molecular oxygen and CdS conduction band electrons. The second reaction route is the chain-radical HS oxidation induced by photoexcited CdS nanoparticles and propagating in the bulk of a solution. In conditions favourable to chain-radical oxidation of HS(i.e. at low light intensities and CdS concentration and high oxygen and Na2S concentrations) quantum yields of the photoreaction reach 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awatani T. & A. J. McQuillan., 1998. Adsorbed thiosulfate intermediate of cadmium sulfide aqueous photocorrosion detected and characterized by in situ infrared spectroscopy. J. Phys. Chem. 102, 4110–4113.

    Google Scholar 

  • Beydoun D., R. Amal, G. Low & S. McEvoy, 1999. Role of nanoparticles in photocatalysis. J. Nanoparticles Res. 1, 439–458.

    Article  Google Scholar 

  • Benjamin D., & D. Huppert, 1988. Surface recombination velocity measurements of CdS single crystals immersed in electrolytes. A picosecond photolumi-nescence study. J. Phys. Chem. 92, 4676–4679.

    Article  Google Scholar 

  • Charlot G., 1961. Les methodes de la chimie analytique (Analyse quantitative mine ’rale). Masson ed., Paris, France.

    Google Scholar 

  • Chestnoy N., T. D. Harris, R. Hull & L. E. Brus, 1986. Luminescence and Photophysics of CdS semiconductor clusters: The nature of the emitting electronic state. J. Phys. Chem. 90, 3393–3399.

    Article  Google Scholar 

  • Deister U., & P. Warneck, 1990. Photooxidation of (SO32) in Aqueous Solution. J. Phys. Chem. 94, 2191–2198.

    Article  Google Scholar 

  • Ermakov A. N., G. A. Poskrebyshev & A. P. Purmal, 1997. Sulfite oxidation. modern state of the problem. Kinetics and Catalysis 38, 325–338.

    Google Scholar 

  • Holzbecher Z., L. Divis., L. S. u. cha & F. Vlacil, 1975. Organická éinidla v anorganicke ánalýze. SNTL, Praha.

    Google Scholar 

  • Emelyanova G. I., L. E. Gorlenko, L. V. Voronova, M. P. Zverev & V. V. Lunin, 1999. Low-temperature hydrogen sulfide oxidation to sulfur over metal-containing vion fibers. Kinetics and Catalysis 40, 90–96.

    Google Scholar 

  • Fendler J. H. (ed.), 1998. Nano particles and Nano structured films: preparation, Characterization and Application. Weinheim, New York, USA.

    Google Scholar 

  • Giggenbach W., 1972. Optical Spectra and Equilibrium Distribution of Polysulfide Ions in Aqueous Solution at 20 C. Inorg. Chem. 11, 1201–1207.

    Article  Google Scholar 

  • Gra ¨tzel M. (ed.), 1983. Energy Resources through Photochemistry and Catalysis. Academic Press, New York, USA.

    Google Scholar 

  • Hoyer P. & H. Weller, 1995. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films. J. Phys. Chem. 99, 14096–14100.

    Article  Google Scholar 

  • Khairutdinov R. F., 1998. Chemistry of semiconductor nano-particles. Uspechi chimii (russ. ed.) 67, 125–139.

    Google Scholar 

  • Kryukov A. I., S. Ya. Kuchmii & V. D. Pokhodenko, 2000. Energetics of electronic processes in semiconductor photocat-alytic systems. Theoret. Experim. Chem. (engl. ed.) 36, 69–87.

    Google Scholar 

  • Kovach S. K., V. S. Vorobets & A. T. Vas ‘ko, 1988. Determination of the second dissociation constant of hydrogen sulfide with the use of sulfide-selective electrode. Ukrain. chim. zhurnal. (russ. ed.) 54, 150–154.

    Google Scholar 

  • Kamat P. V. & N. M. Dimitrijevic, 1989. Dynamic Burstein. Moss Shift in Semi-conductor Colloids. J. Phys. Chem. 93, 2873–2875.

    Article  Google Scholar 

  • Licht S., G. Hodes, & J. Manassen, 1986. Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photo-electrochemical solar cells. Inorg. Chem. 25, 2485–2489.

    Article  Google Scholar 

  • Liu C-Y., & Bard A. J., 1989. Effect of Excess charge on band energetics (optical absorbtion edge and carrier redox potential)in Small Semiconductor Particles. J. Phys. Chem. 93, 3232–3237.

    Article  Google Scholar 

  • Meissner D., R. Memming & B. Kastening, 1988. Photoelect-rochemistry of cadmium sulfide. 1. Reanalysis of photocor-rosion and. at-band potential. J. Phys. Chem. 92, 3476–3483.

    Article  Google Scholar 

  • Mills G., M. S. Schmidt, M. S. Matheson & D. Meisel, 1987. Thermal and photo-chemical reactions of sulfhydryl radicals. Implications for colloid photo-corrosion. J. Phys. Chem. 91, 1590–1596.

    Google Scholar 

  • Magomedov M. A., R. N. Gasanova, A. M. Kurbanova & Kh. A. Magomedov, 1999. Characteristic parameters of oxygen photoadsorbtion on epitaxial layers of cadmium chalcoge-nides (CdS, CdSe, n-CdTe) Zhurnal. z. chimii (russ. ed.) 73, 1122–1124.

    Google Scholar 

  • Nosaka Y. & M. A. Fox, 1986. Effect of light intensity on the quantum yield of photoinduced electron transfer from colloidal cadmium sulfide to methyl-viologen. J. Phys. Chem. 90, 6521–6522.

    Article  Google Scholar 

  • Nosaka Y., N. Ohta & H. Miyama, 1990. Photochemical kinetics of ultrasmall semi-conductor particles in solution: Effect of size on the quantum yield of electron transfer J. Phys. Chem. 94, 3753–3755.

    Article  Google Scholar 

  • Raevskaya A. E., A. L. Stroyuk & S. Ya. Kuchmii, 2003a. Optical properties of colloidal CdS nanoparticles stabilized with the sodium polyphosphate and their behaviour under pulse photoexcitation. Theoret. Experim. Chem. (engl. ed.) 39, 153–160.

    Google Scholar 

  • Raevskaya A. E., A. L. Stroyuk & S. Ya. Kuchmii, 2003b. Photocatalytic activity of CdS nanoparticles in sul. te ions chain oxidation by molecular oxygen. Theoret. Experim. Chem. (russ. ed.) 39, 230–235.

    Google Scholar 

  • Rao C. N. R. & A. K. Cheetham, 2001. Science and technology of nanomaterials:current and future prospects. J. Mater. Chem. 11, 2887–2894.

    Article  Google Scholar 

  • Resch P., R. J. Field & F. W. Schneider, 1989. The Methylene Blue. HS. O2 oscillator:mechanistic proposal and periodic perturbation. J. Phys. Chem. 93, 2783–2791.

    Article  Google Scholar 

  • Schubert R, 1991. Lehrbuch der O ¨kologie. Ganz Fischer Verlag, Leipzig, Germany.

    Google Scholar 

  • Shiragami T., S. Fukami, Y. Wada & S. Yanagida, 1993. Semiconductor Photo-catalysis:Effect of light intensity on nanoscale CdS-catalyzed photolysis of organic solvents. J. Phys. Chem. 97, 12882–12887.

    Article  Google Scholar 

  • Tolkachev N. N., A. Yu. Stacheev, L. M. Kustov & L. A. Bondar, 2001. Spectral properties of CdS nanoparticles incapsulated in silica micropores. Zhurnal. z. chimii (russ. ed.)75, 1679–1683.

    Google Scholar 

  • Wang Y. & N. Herron, 1991. Nanometer-sized semiconductor clusters:Materials synthesis, quantum size Effects, and photophysical properties. J. Phys. Chem. 95, 525–532.

    Article  Google Scholar 

  • Zakhalyavko, G. A., N. V. Gorokhovatskaya & V. V. Goncharuk, 1987. Utilization of carboxylic cationite for the purification of waters polluted by hydrogen sulfide. Chem. Technol. Water. (russ. ed.) 9, 459–460.

    Google Scholar 

  • Zakhalyavko G. A., S. S. Stavisskaya, I. A. Tarkovskaya, N. V. Gorokhovatskaya & V. V. Goncharuk 1989. Liquid-phase sulfide ions air oxidation in aqueous solutions over modified oxidized carbons. Chem. Technol. Water. (russ. ed.) 11, 982–984.

    Google Scholar 

  • Zhang Y-X. & R. J. Field, 1991. Simplification of a mechanism of the methylene blue. HS. O2 CSTR oscillator:A homogeneous oscillatory mechanism with nonlinearities but no autocatalysis. J. Phys. Chem. 95, 723–727.

    Article  Google Scholar 

  • Zhang J. Z., 2000. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B. 104, 7239–7253.

    Article  Google Scholar 

  • Zhang J. Z., R. H. O’Neil & T. W. Roberti, 1994. Femtosecond studies of photoinduced electron dynamics at the liquid-solid interface of aqueous CdS Colloids. J. Phys. Chem. 98, 3859–3864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raevskaya, A.E., Stroyuk, A. & Kuchmii, S. Photocatalytic Oxidation of Hydrosulfide Ions by Molecular Oxygen Over Cadmium Sulfide Nanoparticles. J Nanopart Res 6, 149–158 (2004). https://doi.org/10.1023/B:NANO.0000034719.30620.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000034719.30620.d3

Navigation