Skip to main content
Log in

New Synthesis of Ferrite–Silica Nanocomposites by a Sol–Gel Auto-Combustion

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A sol–gel autocombustion method was used to synthesize nanometric metal-oxide powders, and was extended for the first time to prepare ferrite–silica nanocomposites. The gels obtained by mixing suitable amounts of citric acid, metal nitrates, ammonia (pure phases) and tetraethylortosilicate (nanocomposites) were converted directly to ferrite (either γ-Fe2O3 or CoFe2O4) or ferrite–silica composites through a rapid autocombustion reaction. The combustion involves a thermally induced autocatalytic oxidation–reduction reaction between the nitrate and the citrate ions. The sample characterization by X-ray diffraction, transmission electron microscopy and N2 physisorption measurements revealed nanosized pure phase powders and nanocomposites in which small spherical nanoparticles (mean size 3.5 and 5.0nm, respectively for the γ-Fe2O3and CoFe2O4) are homogeneously dispersed over a mesoporous silica matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cannas C., G. Concas, D. Matteschi, A. Falqui, A. Musinu, G. Piccaluga, C. Sangregorio & G. Spano, 2001. Super-paramagnetic behaviour of c Fe2 O3 nanoparticles dis-persed in a silica matrix. Phys. Chem. Chem. Phys. 3(5), 832–838.

    Article  Google Scholar 

  • Cannas C., G. Concas, D. Gatteschi, A. Musinu, G. Piccaluga & C. Sangregorio, 2002. How to tailor maghemite particle size in c Fe2 O3. SiO2 nanocomposites. J. Mater. Chem. 12(10), 3141–3146.

    Article  Google Scholar 

  • Chakraborty A. & H. S. Maiti, 1996. Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem. 6(7), 1169–1173.

    Article  Google Scholar 

  • Chakraborty A., P. Sujatha Devi, S. Roy & H. S. Maiti, 1994. Low-temperature synthesis of ultra. ne La0–84 Sr0–16 MnO3 powder by an autoignition process. J. Mater. Res. 9(4), 986–991.

    Google Scholar 

  • Chick L. A., L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas G. J. Exarhos, 1990. Glycine. nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10(1–2), 6–12.

    Article  Google Scholar 

  • Devi P. S. & H. S. Maiti, 1994. A modified citrate gel route for the synthesis of phase pure Bi2 Sr2 CaCu2 O8 superconductor. J. Mater. Res. 9(6), 1357–1362.

    Google Scholar 

  • Devi P. S., Y. Lee, J. Margolis, J. B. Parise, S. Sampath, H. Herman & J. C. Hanson, 2002. Comparison of citrate. nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet. J. Mater. Res. 17(11), 2846–2851.

    Google Scholar 

  • Del Monte F., M. P. Morales, D. Levy, A. Fernandez, M. Ocana, A. Roig, E. Molins, K. O’Grady & C. J. Serna, 1997. Formation of c Fe2 O3 isolated nanoparticles in a silica matrix. Langmuir 13, 3627–3634.

    Article  Google Scholar 

  • Dollimore D. & G. R. Heal, 1964. An improved method for the calculation of pore-size distribution from adsorption data. J. Appl. Chem. 14, 109–114.

    Google Scholar 

  • Edelstein A. S. & R. Cammarata, 1996. Nanomaterials:Synthesis, Properties and Applications. Institute of Physics Publishing, London.

    Google Scholar 

  • Ennas G., M. F. Casula, A. Falqui, D. Gatteschi, G. Marongiu, S. Marras, G. Piccaluga & C. Sangregorio, 2003. Iron and iron-oxide on silica nanocomposites prepared by the sol. gel method. J. Sol. gel Sci. Technol. 26, 463–466.

    Article  Google Scholar 

  • Ennas G., G. Marongiu, S. Marras & G. Piccaluga, in press. Mechanochemical route for the synthesis of cobaltferrite. silica and iron. cobalt alloy. silica nanocomposites. J. Nano-particle Res.

  • Gregg S. J. & K. S. W. Sing, 1982. Adsorption, Surface Area and Porosity., 2nd edn. Academic Press, London.

    Google Scholar 

  • Haneda K. & A. H. Morrish, 1977. Vacancy ordering in c Fe2 O3 small particles. Solid State Commun. 22, 779–782.

    Article  Google Scholar 

  • Hon Y. M., K. Z. Fung & M. H. Hon, 2001. Synthesis and characterization of Li1+d Mn2 )d O4 powders prepared by citric acid gel process. J. Euro. Ceram. Soc. 24, 515–522.

    Article  Google Scholar 

  • Jain S. R., K. C. Adiga & V. R. Pai Verneker, 1981. A new approach to thermochemical calculations of condensed fuel. oxidizer mixtures. Combust. Flame 40, 71–76.

    Article  Google Scholar 

  • Jang J., W. Weng & Z. Ding, 1995. The drawing behavior of Y. Ba. Cu. O sol from non-aqueous solution by a complexing process. J. Sol. Gel Sci. Technol. 4(3), 187–191.

    Article  Google Scholar 

  • Kingaley J. J. & K. C. Patil, 1988. A novel combustion process for the synthesis of. ne particle a alumina and related oxide materials. Mater. Lett. 6, 427–432.

    Google Scholar 

  • Leite E. R., N. L. V. Carren. o, E. Longo, F. M. Pontes, A. Barison, A. G. Ferriera, Y. Manette & J. A. Varala, 2002. Development of metal. SiO2 nanocomposites in a single-step process by the polymerizable complex method. Chem. Mater. 14, 3722–3729.

    Google Scholar 

  • Marinsek M., K. Zupan & J. Maeèk, 2002. Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources 106, 178–188.

    Article  Google Scholar 

  • Mishra S. K., L. C. Pathak & V. Rao, 1997. Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process. Mater. Lett. 32, 137–141.

    Article  Google Scholar 

  • Nalwa H. S., 2000. Handbook of Nanostructured Materials and Nanotechnology, Vol. 1, Synthesis and Processing. Academic Press, San Diego.

    Google Scholar 

  • Narendar Y. & G. L. Messine, 1997. Mechanism of phase separation in gel-based synthesis of multicomponent metal oxides. Cat. Today 35, 247–268.

    Article  Google Scholar 

  • Pederson L. R., G. D. Maupin, W. J. Weber, D. J. McReady & R. W. Stephen, 1991. Combustion synthesis of YBa2 Cu3 O7 )xglycine/metal nitrate method. Mater. Lett. 10, 437–443.

    Article  Google Scholar 

  • Pierre A. C., T. Nickerson & W. Kresic, 1990. Hydrous copper oxides gels. J. Non Cryst. Solids 121, 45–50.

    Article  Google Scholar 

  • Qi X., J. Zhou, Z. Yue, Z. Gui & L. Li, 2003. A simple way to prepare nanosized LaFeO3 powders at room temperature. Ceram. Int. 29, 347–349.

    Article  Google Scholar 

  • Ravindranathan P. & K. C. Patil, 1986. A one-step process for the preparation of c iron oxide (c Fe2 O3 ). J. Mater. Sci. Lett. 5, 221–222.

    Article  Google Scholar 

  • Ravindranathan P., G. V. Mahesh & K. C. Patil, 1987. Low-temperature preparation of fine-particle cobaltites. J. Solid State Chem. 66, 20–25.

    Article  Google Scholar 

  • Roy S., A. Sharma, S. N. Roy & H. S. Maito, 1993. Synthesis of YBa2 Cu3 O7 )x powder by autoignition of citrate. nitrate gel. J. Mater. Res. 8(11), 2761–2766.

    Google Scholar 

  • Shafer S., W. Sigmund, S. Roy, F. Aldinger, 1997. Low temperature synthesis of ultra. ne Pb(Zr, Ti)O3 powder by sol. gel combustion. J. Mater. Res. 12(10), 2518–2521.

    Google Scholar 

  • Solinas S., G. Piccaluga, M. P. Morales & C. J. Serna, 2001. Solgel formation of c Fe2 O3 /SiO2 nanocomposites. Acta Mater. 49(14), 2805–2811.

    Article  Google Scholar 

  • Takahashi R., S. Sato, T. Sodesawa, M. Kawakita & K. Ogura, 2000. High surface-area silica with controlled pore size prepared form nanocomposite of silica and citric acid. J. Phys. Chem. B 104, 12184–12191.

    Article  Google Scholar 

  • Vaqueiro P. & M. Arturo Lope‘z Quintela, 1998. Synthesis of yttrium aluminium garnet by the citrate gel process. J. Mater. Chem. 8(1), 161–163.

    Article  Google Scholar 

  • Xu X. L., J. D. Guo & Y. Z. Wang, 2000. A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles. Mater. Sci. Eng. B 77, 207–209.

    Article  Google Scholar 

  • Xu X. L., J. D. Guo, Y. Z. Wang & A. Sozzi, 2002. Synthesis of nanoscale superconducting YBCO by a novel technique. Physica C 371, 129–132.

    Google Scholar 

  • Yue Z., L. Li, J. Zhou, H. Zhang & Z. Gui, 1999. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate. citrate gels. Mater. Sci. Eng. B 64, 68–72.

    Article  Google Scholar 

  • Yue Z., J. Zhou, L. Li, H. Zhang & Z. Gui, 2000. Synthesis of nanocrystalline NiCuZn ferrite powders by sol. gel auto-combustion method. J. Magn. Magn. Mater. 21, 55–60.

    Article  Google Scholar 

  • Yue Z., J. Zhou, X. Wang & Z. Gui, L. Li, 2001. Low-temperature sintered Mg. Zn. Cu ferrite prepared by auto-combustion of nitrate. citrate gel. J. Mater. Sci. Lett. 20, 1327–1329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cannas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannas, C., Musinu, A., Peddis, D. et al. New Synthesis of Ferrite–Silica Nanocomposites by a Sol–Gel Auto-Combustion. J Nanopart Res 6, 223–232 (2004). https://doi.org/10.1023/B:NANO.0000034679.22546.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000034679.22546.d7

Navigation