Skip to main content
Log in

Three-Dimensional Porous Network Structure Developed in Hydroxyapatite-Based Nanocomposites Containing Enzyme Pretreated Silk Fibroin

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Chemically modified silk fibroin (SF) with an enzyme, Proteinase K, has been incorporated into hydroxyapatite (HAp)-based nanocomposite attempting to strengthen the interfacial bonding between the mineral phase and the organic matrix. Particular emphasis is laid on the microstructure and microhardness of the composite along with the crystallographic properties of HAp. The whisker-like HAp crystallites of nanometer size show the preferential self-assembly and anisotropic crystal growth along c-axis. There appears porous microstructure with 70% of open porosity and pore size distribution of 10–115 um in the composite. Attributed to the enzyme modification, the crosslinkage between HAp clusters and SF matrix is improved to form an enhanced three-dimensional network extending throughout the composites and an increase of 35% in microhardness of the composite is achieved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bigi A., S. Panzavolta & N. Roveri, 1998. Hydroxyapatite-gelatin films: A structural and mechanical characterization. Biomaterials 19, 739-744.

    PubMed  Google Scholar 

  • Chang M.C., T. Ikoma, M. Kikuchi & J. Tanaka, 2002. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. J. Mater. Sci. Mater. Med. 13, 993-997.

    PubMed  Google Scholar 

  • Chang M.C., C.C. Ko & W.H. Douglas, 2003. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24, 2853-2862.

    PubMed  Google Scholar 

  • Chen F., Z.C. Wang & C.J. Lin, 2002. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater. Lett. 57, 858-861.

    Google Scholar 

  • Du C., F.Z. Cui, W. Zhang, Q.L. Feng, X.D. Zhu & K. De Groot, 2000. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J. Biomed. Mater. Res. 50, 518-527.

    PubMed  Google Scholar 

  • Evans G.P., J.C. Behiri, J.D. Currey & W. Bonfield, 1990. Micro-hardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue. J. Mater. Sci. Mater. Med. 1, 38-43.

    Google Scholar 

  • Freddi G., P. Monti, M. Nagura, Y. Gotoh & M. Tsukada, 1997. Structure and molecular conformation of tussah silk fibroin films: Effect of heat treatment. J. Polym. Sci. B: Polym. Phys. 35, 841-847.

    Google Scholar 

  • Furuzono T., T. Taguchi, A. Kishida, M. Akashi & Y. Tamada, 2000. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 50, 344-352.

    PubMed  Google Scholar 

  • Ikoma T., A. Yamazakai, S. Nakamura & M. Akao, 1999. Preparation and structure refinement of monoclinic hydroxy-apatite. J. Solid State Chem. 144, 272-276.

    Google Scholar 

  • Ito M., Y. Hidaka, M. Nakajima, H. Yagasaki & A.H. Kafrawy, 1999. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. J. Biomed. Mater. Res. 45, 204-208.

    PubMed  Google Scholar 

  • Izumi F. & T. Ikeda, 2000. ARietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321, 198-203.

    Google Scholar 

  • Kikuchi M., S. Itoh, S. Ichinose, K. Shinomiya & J. Tanaka, 2001. Self-organization mechanism in a bone-like hydroxy-apatite/ collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22, 1705-1711.

    PubMed  Google Scholar 

  • Liu D.M., 1996. Fabrication and characterization of porous hydroxyapatite granules. Biomaterials 17, 1955-1957.

    PubMed  Google Scholar 

  • Park S.J., K.Y. Lee, W.S. Ha & S.Y. Park, 1999. Structural changes and their effect on mechanical properties of silk fibroin/chito-san blends. J. Appl. Polym. Sci. 74, 2571-2575.

    Google Scholar 

  • Petsch D., W.D. Deckwer & F.B. Anspach, 1998. Proteinase K digestion of proteins improves detection of bacterial endo-toxins by the limulus amebocyte lysate assay: Application for endotoxin removal from cationic proteins. Anal. Biochem. 259, 42-47.

    PubMed  Google Scholar 

  • Rhee S.H. & J. Tanaka, 2002. Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate. J. Mater. Sci.: Mater. Med. 13, 597-600.

    Google Scholar 

  • Sepulveda P., J.G.P. Binner, S.O. Rogero, O.Z. Higa & J.C. Bressiani, 2000. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 50, 27-34.

    PubMed  Google Scholar 

  • Tamai N., A. Myoui, T. Tomita, T. Nakase, J. Tanaka & T. Ochi, 2002. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59, 110-117.

    PubMed  Google Scholar 

  • Tampieri A., G. Celotti, S. Sprio, A. Delcogliano & S. Franzese, 2001. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22, 1365-1370.

    PubMed  Google Scholar 

  • TenHuisen K.S. & P.W. Brown, 1994. The formation of hydroxyapatite-gelatin composites at 381/4ñêôœ'C. J. Biomed. Mater. Res. 28, 27-33.

    PubMed  Google Scholar 

  • Wang L., R. Nemoto & M. Senna, 2002. Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J. Nanoparticle Res. 4, 535-540.

    Google Scholar 

  • Wang L., R. Nemoto & M. Senna, 2003a. Changes in microstruc-ture and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. J. Eur. Ceram. Soc. (in press).

  • Wang L., R. Nemoto & M. Senna, 2003b. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite. J. Mater. Sci.: Mater. Med. (in press).

  • Yamaguchi I., K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma & J. Tanaka, 2001. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 55, 20-27.

    PubMed  Google Scholar 

  • Zhao F., Y.J. Yin, W.W. Lu, J.C. Leong, W.Y. Zhang, J.Y. Zhang, M.F. Zhang & K.D. Yao, 2002. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23, 3227-3234.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Senna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Nemoto, R. & Senna, M. Three-Dimensional Porous Network Structure Developed in Hydroxyapatite-Based Nanocomposites Containing Enzyme Pretreated Silk Fibroin. Journal of Nanoparticle Research 6, 91–98 (2004). https://doi.org/10.1023/B:NANO.0000023228.49670.86

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000023228.49670.86

Navigation