Skip to main content
Log in

Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports the evolution of a new class of core–shell type, that is, Aucore–Agshell bimetallic nanoparticles by seed mediated technique for surface enhanced Raman scattering (SERS) study. Here it is demonstrated how to control the thickness of Ag-shell with the variation of gold seed (∼15 nm) to Ag ion concentration which in turn control the particle size in the range from 50 to 100 nm with increase of shell thickness. For 50 nm core–shell particles the thickness of the shell was ∼17 nm, for 70 nm particles the thickness was ∼27 nm and for 100 nm the thickness was ∼42 nm. SERS study was performed on those particles using the analyte crystal violet (CV) to examine the impact of the size and field effects of the bimetallics on SERS spectra. A surprising finding is that a small particle as low as 50 nm have been found to be highly efficient for SERS, even it enables the detection of a selected dye molecule down to single molecular level. The sensitivity of the SERS detection limit has been improved further with an activating reagent like NaCl. The newly modeled bimetallic system establishes a relationship between the local electromagnetic (EM) field effect and chemical effect (CE) on the enhancement of SERS spectra, which provides further insight into the enhancement mechanism of SERS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht M.G. & J.A. Creighton, 1977. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215-5218.

    Google Scholar 

  • Alivisatos A.P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937.

    Google Scholar 

  • Ambrose W.P., P.M. Goodwin, J.C. Martin & R.A. Keller, 1994. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265, 364-367.

    Google Scholar 

  • Bjerneld E.J., Z. Foldes-Papp, M. Kall & R. Rigler, 2002. Single-molecule surface-enhanced Raman and fluorescence correla-tion spectroscopy of horseradish peroxidase. J. Phys. Chem. B 106, 1213-1218.

    Google Scholar 

  • Bohren C.F. & D.F. Huffmann, 1983. Absorption and Scattering of Light of Small Particles. Wiley, New York, p. 183.

    Google Scholar 

  • Bosnick K.A., J. Jiang & L.E. Brus, 2002. Fluctuations and local symmetry in single-molecule Rhodamin 6G Raman scat-tering on silver nanocrystal aggregates. J. Phys. Chem. 106, 8096-8099.

    Google Scholar 

  • Campion A. & P. Kambhampati, 1998. Surface enhanced Raman scattering. Chem. Soc. Rev. 27, 241.

    Google Scholar 

  • Chan W.C.W. & S. Nie, 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016-2018.

    PubMed  Google Scholar 

  • Creighton J.A. & D.G. Eadon, 1991. Ultraviolet-visible absorp-tion spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87, 3881-3891.

    Google Scholar 

  • Emory S.R., W.E. Haskins & S. Nie, 1998. Direct observa-tion of size-dependent optical enhancement in single metal nanoparticles. J. Am. Chem. Soc. 120, 8009-8010.

    Google Scholar 

  • Fleischmann M., P.J. Hendra & A.J. McQuillan, 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163-166.

    Google Scholar 

  • Frens G., 1973, Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature 241, 20-22.

    Google Scholar 

  • Henglein A., 1989. Small-particle research: Physiochemical properties of extremely small colloidal metal and semiconduc-tor particles. Chem. Rev. 89, 1861-1873.

    Google Scholar 

  • Hildebrandt P. & M. Stockburger, 1984. Surface-enhanced res-onance Raman spectroscopy of Rhodamine 6G on colloidal silver. J. Phys. Chem. 88, 5935-5944.

    Google Scholar 

  • Holtz J.H. & S.A. Asher, 1997. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829-832.

    PubMed  Google Scholar 

  • Jana N.R., L. Gearheart & C.J. Murphy, 2001. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313-2322.

    Google Scholar 

  • Keating C.D., K.M. Kovaleski & M.J. Natan, 1998. Protein: colloid conjugates for surface-enhanced Raman scat-tering: Stability and control of protein orientation. J. Phys. Chem. B 102, 9404-9413.

    Google Scholar 

  • Kneipp K., Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari & M.S. Feld, 1996. Population pumping of excited vibrational states by surface-enhanced Raman scattering. Phys. Rev. Lett. 76, 2444-2447.

    PubMed  Google Scholar 

  • Kneipp K., Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari & M.S. Feld, 1997. Single molecule detection using surface-enhanced Raman scattering. Phys. Rev. Lett. 78, 1667-1670.

    Google Scholar 

  • Krug, II, J.T., J.D. Wang, S.R. Emory & S. Nie, 1999. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am.Chem. Soc. 121, 9208-9214.

    Google Scholar 

  • Lion L.A., M.D. Musick & M.J. Natan, 1998. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 70, 5177-5183.

    PubMed  Google Scholar 

  • Lu L., H. Wang, Y. Zhou, S. Xi, H. Zhang, J. Hu & B. Zhao, 2002. Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag like optical properties. Chem. Comm. 144-145.

  • Mallik K., M. Mandal, N. Pradhan & T. Pal, 2001. Seed medi-ated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of 'core-shell' type structures. Nano Lett. 1, 319-322.

    Google Scholar 

  • Michaels A.M., M. Nirmal & L.E. Brus, 1999. Surface enhanced Raman spectroscopy of individual Rhodamin 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932-9939.

    Google Scholar 

  • Moerner W.E. & M. Orrit, 1999. Illuminating single molecules in condensed matter. Science 283, 1670-1676.

    PubMed  Google Scholar 

  • Moskovits M., 1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783-826.

    Google Scholar 

  • Nie S. & S.R. Emory, 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106.

    PubMed  Google Scholar 

  • Otto A.I., Mrozek, H. Grabhorn & W.J. Akemann, 1992. Surface-enhanced Raman scattering. Phys. Condens. Mater. 4, 1143-1212.

    Google Scholar 

  • Otto A., I. Packrand, J. Billmann & C. Pettenkofer, 1982. In: Sur-face enhanced Raman scattering. Chang R.K. and Furtak T.E. eds. Plenum, New York, p. 147.

    Google Scholar 

  • Persson B.N.J., 1981. On the theory of surface-enhanced Raman scattering. Chem. Phys. Lett. 82, 561-565.

    Google Scholar 

  • Sau T.K., A. Pal & T. Pal, 2001. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266-9272.

    Google Scholar 

  • Schneider S., H. Grau, P. Halbig, P. Freunscht & U. Nickel, 1996. Stabilization of silver colloids by various types of anions and their effect on the surface-enhanced Raman spectra of organic dyes. J. Raman Spectrosc. 27, 57-68.

    Google Scholar 

  • Srnova-Sloufova I., F. Lednicky, A. Gemperle & J. Gemperlova, 2000. Core-Shell (Ag)Au bimetallic nanoparticles: Analysis of transmission electron microscopy images. Langmuir 16, 9928-9935.

    Google Scholar 

  • Storhoff J.J., R. Elghanian, R.C. Mucic, C.A. Markin & R.L. Letsinger, 1998. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959-1964.

    Google Scholar 

  • Trautman J.K., J.J. Macklin, L.E. Brus & E. Betzig, 1994. Nearfield spectroscopy of single molecules at room tempera-ture. Nature 369, 40-42.

    Google Scholar 

  • Vogel A.I., 1973. AText Book of Quantitative Inorganic Analysis. Longman, London, p. 464.

    Google Scholar 

  • Weller H., 1993. Colloidal semiconductor Q-particle: Chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 32, 41-53.

    Google Scholar 

  • Wessel J., 1985. Surface-enhanced optical microscopy. J. Opt. Soc. Amer. B 2, 1538-1540.

    Google Scholar 

  • Xie X.S. & J.K. Trautman, 1998. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 59, 441-480.

    Google Scholar 

  • Xu H., E.J. Bjerneld, M. Kall & L. Borjesseon, 1999. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357-4360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarasankar Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, M., Ranjan Jana, N., Kundu, S. et al. Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method. Journal of Nanoparticle Research 6, 53–61 (2004). https://doi.org/10.1023/B:NANO.0000023227.17871.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000023227.17871.0f

Navigation