Skip to main content
Log in

Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is <10 nm). Thus the synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5–3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow–brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ∼520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.100, 13226–13239.

    Google Scholar 

  • Alvarez M.M., J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar & R.L. Whetten, 1997. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B101, 3706–3712.

    Google Scholar 

  • Belloni J., 1996. Metal nanocolloids. Curr. Opin. Colloid Interface Sci.1, 184–196.

    Google Scholar 

  • Brown K.R. & M.J. Natan, 1998. Hydroxylamine seeding of col-loidal Au nanoparticles in solution and on surfaces. Langmuir 14, 726–728.

    Google Scholar 

  • Brown L.O. & J.E. Hutchison, 1997. Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J. Am. Chem. Soc.119, 12384–12385.

    Google Scholar 

  • Brown L.O. & J.E. Hutchison, 1999. Controlled growth of gold nanoparticles during ligand exchange. J. Am. Chem. Soc.121, 882–883.

    Google Scholar 

  • Brust M., M. Walker, D. Bethell, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem. Commun. 801–802.

  • Chow M.K. & C.F. Zukoski, 1994. Gold sol formation mecha-nism: Role of colloidal stability. J. Colloid Interface Sci.165, 97–109.

    Google Scholar 

  • Creighton J.A., 1982. In: Cheng R.K. and Furtak T.E. eds. Surface Enhanced Raman Scattering. Plenum Press, New York.

    Google Scholar 

  • Esumi K., A. Suzuki, N. Aihara, K. Usui & K. Torigoe, 1998. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir14, 3157–3159.

    Google Scholar 

  • Esumi K., T. Hosoya, A. Suzuki & K. Torigoe, 2000a. Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly (amidoamine) dendrimers. J. Colloid Interface Sci.226, 346–352.

    Google Scholar 

  • Esumi K., T. Hosoya, A. Suzuki & K. Torigoe, 2000b. Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly (amidoamine) den-drimers. Langmuir16, 2978–2980.

    Google Scholar 

  • Esumi K., A. Kameo, A. Suzuki & K. Torigoe, 2001. Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly (amidoamine) dendrimers with surface methyl ester groups. Colloids Surf. A: Physicochem. Eng. Aspects189, 155–161.

    Google Scholar 

  • Freund P.L. & M.J. Spiro, 1985. Colloidal catalysis: The effect of sol size and concentration. J. Phys. Chem.89, 1074–1077.

    Google Scholar 

  • Gliemann H., U. Nickel & S. Schneider, 1998. Application of gelatin-stabilized silver colloids for SERS measurements. J. Raman Spectrosc.29, 89–96.

    Google Scholar 

  • Goia D.V. & E. Metijevic, 1999. Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A: Physicochem. Eng. Aspects146, 139–152.

    Google Scholar 

  • Gratzel M., 1991. In: Kalyansundaram K. ed. Kinetics and Catalysis in Micro Heterogeneous Systems. Marcel Dekker, New York.

    Google Scholar 

  • Henglein A., 1993. Physicochemical properties of small metal particles in solution: 'Microelectrode' reactions, chemisorp-tion, composite metal particles, and the atom-to-metal transi-tion. J. Phys. Chem.97, 5457–5471.

    Google Scholar 

  • Henglein A., 1999. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, con-trolled growth, and some chemical reactions. Langmuir15, 6738–6744.

    Google Scholar 

  • Henglein A. & D. Meisel, 1998. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir14, 7392–7396.

    Google Scholar 

  • Hostetler M.J., J.E. Wingate, C.J. Zhong, J.E. Harris, R.W. Vachet, M.R. Clark, J.D. Londone, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans & R.W. Murray, 1998. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and mono-layer properties as a function of core size. Langmuir14, 17–30.

    Google Scholar 

  • Jana N.R., L. Gearheart & C.J. Murphy, 2001. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater.13, 2313–2322.

    Google Scholar 

  • Kreibig U. & M. Vollmer, 1995. Optical Properties of Metal Clusters. Springer, Berlin.

    Google Scholar 

  • Link S. & M.A. El-Sayed, 1999. Spectral properties and relaxa-tion dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B.103, 4212–4217.

    Google Scholar 

  • Mulvaney P., 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir12, 788–800.

    Google Scholar 

  • Pal A., 1998a. Photoinitiated gold sol generation in aqueous Triton X-100 and its analytical application for spectrophoto-metric determination of gold. Talanta46, 583–587.

    Google Scholar 

  • Pal A., 1998b. Photochemical formation of gold nanoparti-cles in aqueous Triton X-100 and its application in SERS spectroscopy. Curr. Sci.74, 14–16.

    Google Scholar 

  • Pal A., 2001. Photochemical dissolution of gold nanoparti-cles by bromine containing trihalomethanes (THMs) in an aqueous Triton X-100 medium and its analytical application. J. Photochem. Photobiol. A: Chemistry142, 59–65.

    Google Scholar 

  • Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solution or arranged in 2D or 3D superlattices. New J. Chem. 693–702.

  • Pradhan N., A. Pal & T. Pal, 2001. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir17, 1800–1802.

    Google Scholar 

  • Rapoport D.H., W. Vogel, H. Colfen & R. Schlogi, 1997. Ligand-stabilized metal clusters: Reinvestigation of the structure of 'Au55[P(C6H5)3]12Cl6'. J. Phys. Chem. B101, 4175–4183.

    Google Scholar 

  • Sau T.K., A. Pal & T. Pal, 2001a. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. 105, 9266–9272.

    Google Scholar 

  • Sau T.K., A. Pal, N.R. Jana, Z.L. Wang & T. Pal, 2001b. Size con-trolled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanoparticle Res.3, 257–261.

    Google Scholar 

  • Schmid G., 1994. Clusters and Colloids from Theory to Application. VCH, New York.

    Google Scholar 

  • Thomas K.G. & P.V. Kamat, 2000. Making gold nanoparticles glow: Enhanced emission from a surface-bound fluoroprobe. J. Am. Chem. Soc.122, 2655–2656.

    Google Scholar 

  • Turkevich J., P.C. Stevenson & J. Hillier, 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc. Farad. Trans.11, 55–75.

    Google Scholar 

  • Weare W.W., S.M. Reed, M.G. Warner & J.E. Hutchison, 2000. Improved synthesis of small (dcore ¡Ö1 5 nm) phosphine-stabilised nanoparticles. J. Am. Chem. Soc.122, 12890–12891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule. Journal of Nanoparticle Research 6, 27–34 (2004). https://doi.org/10.1023/B:NANO.0000023205.00731.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000023205.00731.6d

Navigation