Skip to main content
Log in

Formation of Silica-Embedded Iron-Oxide Nanoparticles in Low-Pressure Flames

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The formation of γ-Fe2O3 nanoparticles embedded in a silica matrix has been studied in low-pressure premixed flames of hydrogen and oxygen. The organometallic precursors iron-pentacarbonyl (Fe(CO)5) and tetramethylsilane (Si(CH3)4) were used as starting materials for the core particles and matrix material, respectively. Fe2O3 particles with a diameter of about 3–7nm were successfully embedded in a surrounding silica matrix of about 9–13nm in diameter. The iron oxide particle kernels are superparamagnetic at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin A.C., I.M. Davidson & M.D. Reed, 1974. J. Chem. Soc. Faraday Trans. 1, 217.

    Google Scholar 

  • Brochin F., X. Devaux, J. Ghanbaja & H. Scherrer, 1999. Nanostruct. Mater. 11, 1.

    Google Scholar 

  • Buchta C., D.V. Stucken, J.T. Vollmer & H.G. Wagner, 1992. Z. Phys. Chem. 177, 1.

    Google Scholar 

  • Cullity B.D., 1972. Introduction to magnetic materials, Addison-Wesley Publishing Company, Reading, MA, USA.

    Google Scholar 

  • Ehrman S.H., S.K. Friedlander & M.R. Zachariah, 1998. J. Aerosol Sci. 29, 687.

    Google Scholar 

  • Ehrman S.H., M.I. Aquino-Class & M.R. Zachariah, 1999. J. Mater. Res. 14, 1664.

    Google Scholar 

  • Hospital A. & P. Roth, 1990. 23rd Symposium (International) on Combustion, The Combustion Institute 1573.

  • Hung Ch.-H. & J.L. Katz, 1992. J. Mater. Res. 7, 1861–1869.

    Google Scholar 

  • Hung Ch.-H., P.F. Miquel & J.L. Katz, 1992. J. Mater. Res. 7, 1870.

    Google Scholar 

  • Kurz A., 2000. Diploma thesis, Gerhard-Mercator University, Duisburg. Janzen C. & P. Roth, 2001. Combust. Flame 125, 1150.

    Google Scholar 

  • Lindackers D., M.G.D. Strecker, P. Roth, C. Janzen & S.E. Pratsinis, 1997. Combust. Sci. Tech. 123, 287.

    Google Scholar 

  • Roth P. & A. Hospital, 1994. J. Aerosol Sci. 25, 61.

    Google Scholar 

  • Spicer P.T., C. Artelt, S. Sanders & S.E. Pratinis, 1998. J. Aerosol Sci. 29, 647.

    Google Scholar 

  • Viswanath R.N. & S. Ramasamy, 1999. Nanostruct. Mater. 12, 1085.

    Google Scholar 

  • Vollath D., D.V. Szab#x00F3; & J. Haußelt, 1997. J. Eur. Ceram. Soc. 17, 1317.

    Google Scholar 

  • Vollath D., D.V. Szab#x00F3; & J. Fuchs, 1999. Nanostruct. Mater. 12, 433.

    Google Scholar 

  • Warren B.E., 1969. X-ray Diffraction, Dover Publications, Inc., New York, p. 253.

    Google Scholar 

  • Woiki D., A. Giesen & P. Roth, 2002. Proceedings of the 23rd International Symposium Shock Waves 447.

  • Zachariah M.R., M.I. Aquino, R.D. Shull & E.B. Steel, 1995. Nanostruct. Mater. 5, 383.

    Google Scholar 

  • Zhang L., G.C. Papaefthymiou & J.Y. Ying, 2001. J. Appl. Phys. 125, 1150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janzen, C., Knipping, J., Rellinghaus, B. et al. Formation of Silica-Embedded Iron-Oxide Nanoparticles in Low-Pressure Flames. Journal of Nanoparticle Research 5, 589–596 (2003). https://doi.org/10.1023/B:NANO.0000006109.37251.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000006109.37251.fd

Navigation