Skip to main content
Log in

Evolvable computing by means of evolvable components

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper deals with an emerging type of computing – evolvablecomputing. In evolvable computing solutions to problems dynamicallyevolve during system's lifespan either as programs for a universalcomputer or configurations for a physical reconfigurable device. In thispaper the roots of evolvable computing are indicated, a method ispresented for routine design of evolvable systems by means of evolvablecomponents and some consequences for theoretical computer science arehighlighted. In particular it is shown why evolvable computing cannot besimulated on a standard Turing machine. As examples, two evolvablecomponents – for image pre-processing and for evolution of smallpipelined combinational circuits – demonstrate implementations in anordinary field programmable gate array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York Oxford

    Google Scholar 

  • Bentley P and Corne DW eds (2001) Creative Evolutionary Systems. Morgan Kaufmann

  • Bentley P (2002) Digital Biology. Simon and Schuster

  • Bird J and Layzell P (2002) The evolved radio and its implications for modelling the evolution of novel sensors. In: Proceedings of Congress on Evolutionary Computation (CEC 2002), pp. 1836–1841

  • Bondalapati K and Prasanna VK (2002) Reconfigurable computing systems. Proc. of the IEEE 90(7): 1201–1217

    Article  Google Scholar 

  • Bourianoff G (2003) The future of nanocomputing. IEEE Computer August: 44–53

  • Bradley D, Ortega-Sanchez C and Tyrrell A (2000) Embryonics + immunotronics: A bioinspired approach to fault tolerance. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA, USA, 2000, pp. 215–222. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Brooks R (1999) Cambrian Intelligence. The MIT Press, Cambridge, MA

    Google Scholar 

  • Compton K and Hauck S (2002) Reconfigurable computing: A survey of systems and software. ACM Comput. Surv. 34(2): 171–210

    Article  Google Scholar 

  • Copeland BJ and Sylvan R (1999) Beyond the universal Turing machine. Australasian J. of Philosophy 77(1): 46–66

    Google Scholar 

  • Dawkins R (1991) The Blind Watchmaker. Penguin Books, London

    Google Scholar 

  • deHon A (1998) Comparing computing machines. In: Configurable Computing: Technology and Applications, pp 124–133. Bellingham, WA, Proc. SPIE 3526

  • Deutsch D (1997) The Fabric of Reality. Penguin Books, New York

    Google Scholar 

  • Eberbach E (2002) On expressiveness of evolutionary computation: Is EC algorithmic? In: Proc. of Congress on Evolutionary Computation 2002, pp. 564–569.

  • Eberbach E, Goldin D, Wegner P (2004) Turing's ideas and models of computation. In: Teuscher Ch (ed.), Alang Turing: Life and Legacy of a Great Thinker, pp. 159–194. Springer-Verlag, Berlin

    Google Scholar 

  • Flake GW (1998) The Computational Beauty of Nature. The MIT Press, Cambridge, MA

    Google Scholar 

  • Flockton SJ and Sheehan K. Intrinsic circuit evolution using programmable analogue arrays. In:Proc. of the Conf. on Evolvable Systems: From Biology to Hardware ICES'98, pp 144–153. Springer-Verlag, Berlin

  • Gordon T and Bentley P (2001) On evolvable hardware. In: Ovaska S and Sztandera L (eds) Soft Computing in Industrial Electronics, pp. 279–323. Physica-Verlag, Heidelberg

    Google Scholar 

  • Gruska J (1997) Foundations of Computing. Int. Thomson Publishing Computer Press

  • Gruska J (1999) Quantum Computing. McGraw Hill, New York

    Google Scholar 

  • Haddow P and Tufte G (2001) Bridging the genotype-phenotype mapping for digital FPGAs. In: Proc. of the 3rd NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA, 2001, pp. 109–115. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Hartenstein R (2002) Configware/Software co-design: Be prepared for the next revolution. In: Proc. of the 5th IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop, Brno, Czech Republic, 2002, pp. 19–34. Brno University of Technology, Brno

    Google Scholar 

  • Hennessy JL and Patterson DA (1996) Computer Architecture-A Quantitative Approach. Morgan Kaufman Publishers, San Francisco

    Google Scholar 

  • Higuchi T et al. (1993) Evolving hardware with genetic learning: A first step towards building a Darwin machine. In: Proc. of the 2nd International Conference on Simulated Adaptive Behaviour, pp. 417–424. MIT Press, Cambridge MA

    Google Scholar 

  • Higuchi T et al. (1999) Real-world applications of analog and digital evolvable hardware. IEEE Trans. on Evolutionary Computation 3(3): 220–235

    Article  Google Scholar 

  • Holland J (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge MA

    Google Scholar 

  • Koza JR et al. (1999) Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco CA

    Google Scholar 

  • Koza JR, Keane MA and Streeter MJ (2003) What's AI done for me lately? Genetic programming's human-competitive results. IEEE Intelligent Systems May/June: 25–31 www.liberouter.org

  • Linden DS (2002) Optimizing signal strength in-situusing an evolvable antenna system. In: Proc. of the 4th NASA/DoD Conference on Evolvable Hardware, Alexandria, Virginia, USA, 2002, pp. 147–151. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Macias N (1999) The PIG paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, USA, 1999, pp. 175–180. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Mange D et al (2000) Towards robust integrated circuits: The embryonics approach. Proc. of IEEE. 88(4): 516–541

    Article  Google Scholar 

  • Miller J, Job D and Vassilev V (2000) Principles in the evolutionary design of digital circuits-Part I. Genetic Programming and Evolvable Machines, Vol. 1(1), pp. 8–35

    Google Scholar 

  • Miller J and Downing K (2002) Evolution in materio: Looking beyond the silicon box. In: Proc. of the 4th NASA/DoD Conference on Evolvable Hardware, Alexandria, Virginia, USA, 2002, pp. 167–176. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Murakawa M et al (1996) Evolvable hardware at function level. In: Proc. of the Parallel Problem Solving from Nature Conference, LNCS 1141, pp 62–71. Springer, Berlin

    Google Scholar 

  • Nolfi S and Floreano D (2000) Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge MA PicoChip home page, http://www.picochip.com

    Google Scholar 

  • Sekanina L and Ruzicka R (2000) Design of the special fast reconfigurable chip using common FPGA. In: Proc. of the IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop, Bratislava, Smolenice, 2000, pp. 161–168. Polygrafia SAF, Bratislava

    Google Scholar 

  • Sekanina L (2003a) Evolvable Components: From Theory to Hardware Implementations. Natural Computing Series, Springer Verlag, Berlin

    Google Scholar 

  • Sekanina L (2003b) Towards evolvable IP cores for FPGAs. In: Proc. of the 2003 NASA/DoD Conference on Evolvable Hardware, Chicago, USA, pp. 145–154. IEEE Computer Society Press

  • Sekanina L and Friedl S (2004) On routine implementation of virtual evolvable devices using COMBO6. In: Proc. of the 2004 NASA/DoD Conference on Evolvable Hardware, Seattle, USA. IEEE Computer Society Press

  • Sipper M et al. (1997) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. on Evolutionary Computation 1(1): 83–93

    Article  Google Scholar 

  • Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw Hill, New York

    Google Scholar 

  • Stephens CR and Zamora A (2003) EC theory: A unified viewpoint. In Proc. of GECCO 2003, LNCS 2724, pp. 1394–1405. Springer Verlag

  • Stoica A et al (2000) Evolution of analog circuits on field programmable transistor arrays. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA, USA, 2000, pp. 99–108. IEEE Computer Society, Los Alamitos

    Google Scholar 

  • Tan KC, Wang LF, Lee TH and Vadakkepat P (2004) Evolvable Hardware in Evolutionary Robotics. Autonomous Robotics. 16(1): 5–21

    Article  Google Scholar 

  • Thompson A (1998) Hardware Evolution: Automatic Design of Electronic Circuits in Recon-figurable Hardware by Artificial Evolution. Distinguished Dissertation Series, Springer, London

    Google Scholar 

  • Thompson A, Layzell P and Zebulum RS (1999) Explorations in design space: unconventional electronics design through artificial evolution. IEEE Trans. on Evolutionary Computation 3(3): 167–196

    Article  Google Scholar 

  • Torresen J (2002) A scalable approach to evolvable hardware. Genetic Programming and Evolvable Machines 3(3): 259–282

    Article  Google Scholar 

  • Tour JM (2003) Molecular Electronics. World Scientific

  • van Leeuwen J and Wiedermann J (2001a) A Computational Model of Interaction in Embedded Systems. Technical Report UU-CS-2001-02, Utrecht University, The Netherlands

    Google Scholar 

  • van Leeuwen J and Wiedermann J (2001b) The Turing machine paradigm in contemporary computing. In: Mathematics Unlimited-2001 and Beyond, pp. 1139–1155. Springer, Berlin

    Google Scholar 

  • Wagner G and Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3): 967–976

    Google Scholar 

  • Wiedermann J (2004) Building a bridge between mirror neurons and theory of embodied cognition. In: SOFSEM2004: Theory and Practice of Computer Science, 30th Conference on Current Trends in Theory and Practice of Computer Science, LNCS 2932, pp. 361–372. Springer-Verlag, Berlin

    Google Scholar 

  • Wolpert DH and Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1): 67–82

    Article  Google Scholar 

  • Wolpert L (2000) The Triumph of Embryo. Oxford University Press

  • Xilinx, Inc. (2004) WWW home page: http://www.xilinx.com

  • Yao X and Higuchi T (1999) Promises and challenges of evolvable hardware. IEEE Transactions on Systems, Man, and Cybernetics 29(1): 87–97

    Google Scholar 

  • Zhu J and Sutton P (2003) FPGA implementations of neural networks-a survey of a decade of progress. In: Proc. of the 13th International Conference on Field-Programmable Logic and Applications, LNCS 2778, Springer Verlag, Berlin, pp. 1062–1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekanina, L. Evolvable computing by means of evolvable components. Natural Computing 3, 253–292 (2004). https://doi.org/10.1023/B:NACO.0000036820.35779.8e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NACO.0000036820.35779.8e

Navigation