Skip to main content
Log in

Electrophoretic Variants of Intracellular Catalase of Different Candida Species

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Intracellular and extracellular catalases of different species of Candida were investigated using different culture media. All the Candida strains produced intracellular catalase, whose enzymatic activity was detected by non-denaturating polyacrylamide gradient (4–30%) gel electrophoresis. The cell extracts presented a major 230 kDa catalase band and in some strains variants of catalase with different molecular weights were detected. Candida catalase activity was not affected by heating at 50 °C and incubation with β-mercaptoethanol, but treatment with sodium dodecyl sulphate inhibited or reduced enzymatic activity. Extracellular enzyme activity was not detected in any of the culture filtrate extracts tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. García-Ruiz JR, Arilla MC, RegÚlez P, Quindós G, Álvarez A, Pontón J. Detection of antibodies to Candida albicans germ tubes for diagnosis and therapeutic monitoring of invasive candidiasis in patients with hemato-logic malignancies. J Clin Microbiol 1997; 35: 3284–3287.

    Google Scholar 

  2. Pfaller MA, Jones RN, Doern GV, Fluit AC, Verhoef J, Sader HS, Messer SA, Houston A, Coffman S, Hollis RJ. International surveillance of blood stream infections due to Candida species in the European SENTRY Program: Species distribution and anti fungal susceptibility including the investigational triazole and echinocandin agents. Diag Microbiol Infect Dis1999; 35: 19–25.

    Google Scholar 

  3. Pfaller MA, Jones RN, Doern GV, Sader HS, Messer SA, Houston A, Coffman S, Hollis RJ. The Sentry Participant Group. Blood stream infections due to Candida species: SENTRY anti microbial surveillance Programin North America and Latin America, 1997–1998. Antimicrob Agents Chemother 2000; 44: 747–751.

    Google Scholar 

  4. Yamamura DLR, Rotstein C, Nicolle LE, Ioannou S. The Fungal Disease Registry of the Canadian Infectious Disease Society. Candidemia at selected Canadian sites: Results from the Fungal Disease Registry, 1992–1994. CMAJ 1999; 160: 493–499.

    Google Scholar 

  5. Lewis RE, Klepser ME. Thechanging face of nosocomial candidemia: Epidemiology, resistance, and drug therapy. AmJ Health-Syst Pharm 1999; 56: 525–533.

    Google Scholar 

  6. Lunel FMV, Meis JFGM, Voss A. Nosocomial fungal infections: Candidemia. Diag Microbiol Infect Dis 1999; 34: 213–220.

    Google Scholar 

  7. Colombo AL, Salomão MNR, Branchini MLM, Richt-man R, Derossi A, Wey SB. Highrate of non-albicans candidemia in Brazilian tertiarycare hospitals. Diag Microbiol Infect Dis1999; 34: 281–286.

    Google Scholar 

  8. Ross IK, De Bernardis F, Emerson GW, Cassone A, Sullivan PA. The secret edaspartate proteinase of Candida albicans: Physiology of secretion and virulence of a proteinase-decientmutant. J Gen Microbiol 1990; 136: 687–694.

    Google Scholar 

  9. De Bernardis F, Boccanera M, Rinaldi L, Guerra CE, Quinti I, Cassone A. The secretion of as party lproteinase, avirulence enzyme, by isolates of Candida albicans from theoralcavity of HIV infected subjects. Eur J Epidemiol 1992; 8: 362–367.

    Google Scholar 

  10. Shimizu MT, Jorge AOC, Unterkircher CS, Fantinato V, Paula CR. Hyaluronidase and chondroit insulphatase production by different species of Candida. J Med Vet Mycol 1995; 33: 27–31.

    Google Scholar 

  11. Shimizu MT, Almeida NQ, Fantinato V, Unterkircher CS. Studies on hyaluronidase, chondroitinsulphatase, proteinase and phospholipase secreted by Candida species. Mycoses 1996; 39: 161–167.

    Google Scholar 

  12. Potoka DA, Takao S, Owaki T, Bulkley GB, Klein AS. Endothelial cells potentiate oxidant-mediated Kupffercell phagocytic killing. Free Rad Biol Med 1998; 24: 1217–1227.

    Google Scholar 

  13. Lefkowitz SS, Gelderman MP, Lefkowitz DL, Moguilev-sky N, Bollen A. Phagocytosis and intra cellular killing of Candida albicans by macrophage sex posed to my eloperoxidase. J Infect Dis 1996; 173:1202–1207.

    Google Scholar 

  14. Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 1998; 66: 1953–1961.

    Google Scholar 

  15. Yamada T, Tanaka A, Fukui S. Properties of catalase puried from whole cell sand peroxisomes of nalkanegrown Candida tropicalis. Eur J Biochem 1982; 125: 517–521.

    Google Scholar 

  16. Ueda M, Mozaffar S, Tanaka A. Catalase from Candida boidinii 2201. Meth Enzymol 1990; 188: 463–467.

    Google Scholar 

  17. Tosado-Acevedo R, Toranzos BS, Alsina A. Extraction and purication of acatalase from Candida albicans. Puer Rico Heal Sci J 1992; 11: 77–80.

    Google Scholar 

  18. Hearn VM, Wilson EV, Mackenzie DWR. Analysis of Aspergillus fumigatus catalase spossessing anti genicactivity. J Med Microbiol 1992; 36: 61–67.

    Google Scholar 

  19. Chang YC, Segal BH, Holland SM, Miller GF, Kwon-Chung KJ. Virulence of catalase-decient Aspergillus nidulansinp 47 phox-l-mice. Implications for fungal path-ogenicity and host defense inchronic granulomatous disease. J Clin Invest 1998; 101: 1843–1850.

    Google Scholar 

  20. Wayne LG, Diaz GA. A double staining method for differentiating between two classes of my cobacterial cata-lase in polyacrylamide electrophoresis gels. Anal Biochem 1986; 157: 89–92.

    Google Scholar 

  21. Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998; 14: 1511–1527.

    Google Scholar 

  22. Wasserman BP, Hultin HO. Effect of deglycosylation on the stability of Aspergillus niger catalase. Arch Biochem Biophys 1981; 212: 385–392.

    Google Scholar 

  23. Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 1999; 37: 375–389.

    Google Scholar 

  24. Hamilton AJ, Bartholomeu MA, Figueroa J, Fenelon LE, Hay RJ. Evidence that the M antigen of Histoplasma capsulatum var. capsulatum is acatalase which exhibits cross-reactivity with other dimorphic fungi. J Med Vet Mycol 1990; 28: 479–485.

    Google Scholar 

  25. Hearn VM, Shimizu M. Effects of tunicamycin on glycoprotein antigens of Aspergillus fumigatus. Microbios 1996; 85: 239–250.

    Google Scholar 

  26. Campbell WP, Wrigley CW, Margolis J. Electrophoresis of small proteins in highly concentrated and cross linked polyacrylamide gradient gels. Anal Biochem 1983; 129: 31–36.

    Google Scholar 

  27. Woodbury W, Spencer AK, Stahman MA. An improved procedure using ferricyanide for detecting catalase isoen-zymes. Anal Biochem 1971; 44: 301–305.

    Google Scholar 

  28. Kim H, Lee JS, Hah YC, Roe JH. Characterization of the major catalase from Streptomyces coelicolor ATCC 10147. Microbiology 1994; 140: 3391–3397.

    Google Scholar 

  29. Cantz M, Mörikofer-Zwez S, Bossi E, Kaufmann H, Wartburg JP, Aebi H. Alternative molecular forms of erythrocyte catalase. Experientia 1968; 24: 119–121.

    Google Scholar 

  30. Gille G, Sigler K, Höfer M. Response of catalase activity and membrane fluidity of aerobically grown Schizosaccharomyces pombe and Saccharomyces cerevisiae to aeration and the presence of substrates. J Gen Microbiol 1993; 139: 1627–1634.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyasaka, N., Unterkircher, C., Carvalho, P. et al. Electrophoretic Variants of Intracellular Catalase of Different Candida Species. Mycopathologia 158, 187–193 (2004). https://doi.org/10.1023/B:MYCO.0000041902.96793.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MYCO.0000041902.96793.b7

Navigation