Skip to main content
Log in

On the Problem of the Fatigue Limit of Metallic Materials

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The main concepts of the fatigue limit of metallic materials are considered. Results of cyclic tests of various steels and copper in the range of high-cycle and gigacycle fatigue are presented. Special features of the respective fatigue curves are discussed. Problems of initiation of fatigue cracks in various domains of cyclic deformation and of existence of a secondary fatigue limit in the range of gigacycle fatigue are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W.-W. Maenning and H.-J. Taferner, "Ursachen der Ausbildung einer Dauerschwingfestigkeisgrenze bei kubischraumzentrierten, kubischflachenzentrierter und hexagonal dichtest gepackten metallen," VDI Foschungsheft, No. 611, 1–39(1982).

    Google Scholar 

  2. A. Ferro and G. Montalenti, "Fatigue of pure iron containing a small quantity of carbon after strain aging," Philosoph. Mag., 8(85), 105–119 (1963).

    Google Scholar 

  3. V. F. Terent'ev, Fatigue Strength of Metals and Alloys [in Russian], Intermet Engineering, Moscow (2002).

    Google Scholar 

  4. V. F. Terent'ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2002).

    Google Scholar 

  5. T. Ekobori, The Physics and Mechanics of Fracture and Strength of Solids [Russian translation], Metallurgiya, Moscow (1971).

    Google Scholar 

  6. V. T. Troshchenko and L. A. Sosnovskii, Fatigue Resistance of Metals and Alloys, Part 1 [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  7. GOST 25.502-79, Methods of Mechanical Tests. Methods of Fatigue Tests [in Russian], Izd. Standartov, Moscow (1986).

  8. T. Nakamura, M. Kaneko, T. Noguchi, and K. Jinbo, "Relation between high cycle fatigue characteristics and fracture origins in low temperature tempered Cr-Mo steel," Trans. Jap. Mech. Eng. A, 64(623), 68–73 (1998).

    Google Scholar 

  9. I. E. Kolosov and T. A. Lebedev, "Cyclic strength of hardened tool steels," Metalloved. Term. Obrab. Met., No. 10, 15–19 (1962).

    Google Scholar 

  10. Q. Y. Wang, G. Baudry, C. Bathias, and J. Y. Berard, "Subsurface crack initiation due to ultra-high cycle fatigue," in: Advances in Mechanical Behavior, Plasticity and Damage, Proc. EUROMAT 2000, Amsterdam-Lausanne, Vol. 2, Elsevier, New York (2000), pp. 1083–1087.

    Google Scholar 

  11. K. Shiozawa, L. Lu, and S. Ishihara, "S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of high carbon-chromium bearing steel," Fatigue Fract. Eng. Mater. Struct., 24(12), 781–790 (2001).

    Article  Google Scholar 

  12. K. Shiozawa, L. Lu, and S. Ishihara, "Duplex S-N characteristics and subsurface fatigue crack initiation behavior in high carbon-chromium bearing steel," in: Proc. 13th Europ. Conf. of Fracture 2000, San Sebastian, Spain, Elsevier Science (2000), pp. 103–111.

  13. Y. Furuya, S. Matsuoka, T. Abe, et al., "Effect of frequency on giga-cycle fatigue properties for low temperature tempered SNSM 439 steel," Trans. Jap. Soc. Mech. Eng. A, 68(667), 477–483 (2002).

    Google Scholar 

  14. L. V. Konovalov and I. M. Petrova, "Special features of cyclic strength of structural steels in the domain of long-term endurance," Vestn. Mashinostr., No. 9, 3–11 (1998).

    Google Scholar 

  15. H. Mughrabi, "On "multi-stage" fatigue life diagrams and the relevant life-controlling mechanisms," in: Proc. Int. Conf. on "Fatigue in the Very High Cycle Regime" 2-4 July, 2001, Vienna, Austria, Inst. of Meteorol. and Physics Austria (2001), pp. 35–49.

    Google Scholar 

  16. H. Zhang and J. Sun, "Change in density of a-Fe during healing of internal fatigue microcracks under annealing," Acta Met., 39(4), 351–354 (2003).

    Google Scholar 

  17. Y. Furuja and S. Matsuoka, "Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPa-class low-alloy steels," Metallurg. Mater. Trans. A, 33A, November, 3421–3431 (2002).

    Google Scholar 

  18. Y. Murakami, M. Takada, and T. Toriyama, "Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel," Int. J. Fatigue, 16, 661–667 (1998).

    Article  Google Scholar 

  19. S. Nishijiama and K. Kanasawa, "Stepwise S-N curve and fish-eye failure in gigacycle regime," Fatigue Fract. Eng. Mater. Struct., 22, 601–607 (1999).

    Article  Google Scholar 

  20. C. Bathias, "There is no infinite fatigue life in metals," Fatigue Fract. Eng. Mater. Struct., 22, 559–565(1999).

    Article  Google Scholar 

  21. T. Sakai, M. Takeda, K. Shiozawa, et al., "Experimental evidence of duplex S-N characteristics in wide life region for high strength steels," in: FATIGUE 99, Proc. 7th Int. Fatigue Congr., Higher Education Press, Beijing and FMAS, West Midlands, Vol. 1 (1999), pp. 573–578.

    Google Scholar 

  22. Q. Y. Wang, C. Bathias, S. Rathery, and J. Y. Berard, "Comportement en fatigue gigacyclique d'une fonte GS," Rev. Met. (Fr.), 96(2), 221–226 (1999).

    Google Scholar 

  23. P. Lucas and L. Kunz, "Specific features of high cycle and ultra-high cycle fatigue," in: Proc. Int. Conf. on "Fatigue in the Very High Cycle Regime," 2-4 July, 2001, Vienna, Austria, Inst. Meteorol. and Physics Austria (2001), pp. 23–32.

    Google Scholar 

  24. V. F. Terent'ev, "Processes of micro-and macroscopic deformation of metallic materials below the fatigue limit," Metally, No. 5, 1–8 (2003).

    Google Scholar 

  25. Y. Murakami, "Mechanism of fatigue failure in ultralong life regime," in: Proc. Int. Conf. on "Fatigue in the Very High Cycle Regime," 2-4 July, 2001, Vienna, Austria, Inst. Meteorol. Physics Austria (2001), pp. 12–21.

    Google Scholar 

  26. R. Murakami, D. Yonekura, and Z. Ni, "Fatigue fracture behavior of high strength steel in super long life range," JSME Int. J., Ser. A, 45(4), 517–522 (2002).

    Google Scholar 

  27. O. Umezawa and K. Nagai, "Subsurface crack generation in high cycle fatigue for high strength alloys," ISIJ Int., 37(12), 1170–1179 (1997).

    Google Scholar 

  28. H.-J. Spies and P. Trubitz, "Ermüdungsverhalten nitrierter Stähle," rter-Techn. Mitt., 51(6), 378–384 (1996).

    Google Scholar 

  29. V. S. Ivanova, V. A. Kobzev, and V. F. Terent'ev, "A study of cyclic fracture toughness of steel 45 and choice of optimum surface hardening treatment," in: Cyclic Fracture Toughness of Metals and Alloys [in Russian], Nauka, Moscow (1981), pp. 107–126.

    Google Scholar 

  30. V. S. Ivanova, V. F. Terent'ev, V. A. Kobzev, and T. Yokobori, "Investigation on the cycle fatigue toughness of surfacestrengthened structural steel," in: Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ., Vol. 15, No. 1, May(1980), pp. 1–8.

    Google Scholar 

  31. M. Nakajima, K. Tokaji, H. Itoga, and H.-N. Ko, "Morphology of stepwise S-N curves depending on work-hardened layer and humidity in a high strength steel," Fatigue Fract. Eng. Mater. Struct., 26(12), 1113–1118 (2003).

    Article  Google Scholar 

  32. N. Limodin, Y. Verreman, and T. N. Tarfa, "Axial fatigue of gas-nitrided quenched and tempered AISI 4140 steel: effect of nitriding depth," Fatigue Fract. Eng. Mater. Struct., 26(9), 811–820 (2003).

    Article  Google Scholar 

  33. T. Abe, Y. Furuya, and S. Matsuoka, "Gigacycle fatigue properties of 1800 MPa class spring steels," Fatigue Fract. Eng. Mater. Struct., 27(2), 159–167 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terent'ev, V.F. On the Problem of the Fatigue Limit of Metallic Materials. Metal Science and Heat Treatment 46, 244–249 (2004). https://doi.org/10.1023/B:MSAT.0000043111.07884.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MSAT.0000043111.07884.3b

Keywords

Navigation