Earth, Moon, and Planets

, Volume 92, Issue 1–4, pp 359–374 | Cite as

Early Thermal and Structural Evolution of Small Bodies in the Trans-Neptunian Zone

  • Rainer Merk
  • Dina Prialnik


Early evolution of trans-Neptunian objects,commonly known as Kuiper Belt objects (KBOs),is the result of heating due to radioactive decay, the most important sourcebeing 26Al. Several studiesare reviewed, dealing with the long-termevolution of KBO models, calculatedby means of 1-D numerical codesthat solve the heat and mass balanceequations on a fixed spherically symmetric grid. It is shown that, depending on parameters, the interior may reachquite high temperatures. The modelsthus suggest that KBOs are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in the cold subsurface layer. As the initially amorphous ice isshown to crystallize in the interior, some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. It is further shown that the thermal evolution of KBOs cannot be treated separately from their accretional evolution, as the processes occur in parallel. A systematic attempt to calculate accretion and thermal evolution simultaneously is presented, based on a numerical moving grid scheme. The accretion rate is obtained from the solution of the coupled coagulation equations for gravitationally interacting planetesimals. The effect of planetesimal velocities on the accretion scheme is included by a simplified equipartition argument. The time dependent accretion rates serve as input for the numerical solution of the heat transport equation for growing bodies mainly heated by radioactive decay of 26Al, allowing for phase transitions. Calculations carried out over the parameter space [heliocentric distance; final radius; ice fraction] lead to conclusions regarding the structure of KBOs, such as melt fraction, or extent of crystalline ice region.


Accretion Rate Radioactive Decay Thermal Evolution Heliocentric Distance Volatile Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexiades, V. and Solomon, A. D.: 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishers, Washington.Google Scholar
  2. Bell, K. R., Cassen, P. M., Klahr, H. H., and Henning, Th.: 1997, ApJ 486, 372.Google Scholar
  3. Bennett M. E. and McSween H. Y.: 1996, Meteor. Planet. Sci. 31, 783.Google Scholar
  4. Chandrasekhar S.: 1960, The Principles of Stellar Dynamics, Dover, New York.Google Scholar
  5. Choi, Y.-J., Cohen, M., Merk, R., and Prialnik, D.: 2002, Icarus 160, 300.Google Scholar
  6. De Sanctis, M. C., Capria, M. T., and Coradini, A.: 2001, Astron. J. 121, 2792.Google Scholar
  7. Diehl, R., Oberlack, U., Knodlseder, J., Bloemen, H., Hermsen, W., Morris, D., Ryan, J., Schonfelder, V., Strong, A., von Ballmoos, P., and Winkler, C.: 1997, in C. D. Dermer, M. S. Strickman and J.410. p. 1114.Google Scholar
  8. Duncan, M., Quinn, T., and Tremaine, S.: 1988, Astrophys. J. 328, L69.Google Scholar
  9. Greenzweig, Y. and Lissauer, J. J.: 1990, Icarus 87, 40.Google Scholar
  10. Haack, H., Rasmussen, K. L., and Warren, P. H.: 1990, J. Geophys. Res. 95(B4), 5111.Google Scholar
  11. Haruyama, J., Yamamoto, T., Mizutani, H., and Greenberg, J. M.: 1993, J. Geophys. Res. 98, 15079.Google Scholar
  12. Irvine, W. M., Leschine, S. B., and Schloerb, F. P.: 1980, Nature 283, 748.Google Scholar
  13. Kenyon, S. J. and Luu, J. X.: 1998, Astron. J. 115, 2136.Google Scholar
  14. Klinger, J.: 1980, Science 209, 271.Google Scholar
  15. MacPherson, G. J., Davis, A. M., and Zinner, E. K.: 1995, Meteoritics 30, 365.Google Scholar
  16. Merk, R.: 2003, Ph.D. thesis.Google Scholar
  17. Merk, R., Breuer, D., and Spohn, T.: 2002, Icarus 159, 183.Google Scholar
  18. Prialnik, D.: 1998, in A. Fitzsimmons, D. Jewitt, and R. M. West (eds.), Minor Bodies in the Outer Solar System, p. 33.Google Scholar
  19. Prialnik, D. and Bar-Nun, A.: 1990, Astrophys. J. 355, 281.Google Scholar
  20. Prialnik, D., Bar-Nun, A., and Podolak, M.: 1987, Astrophys. J. 319, 992.Google Scholar
  21. Prialnik, D. and Podolak, M.: 1995, Icarus 117, 420.Google Scholar
  22. Prialnik, D. and Podolak, M.: 1999, Space Sci. Rev. 90, 169.Google Scholar
  23. Schmitt, B., Espinasse, S., Grim, R. J. A., Greenberg, J. M., and Klinger, J.: 1989, ESA-SP, 302, 65.Google Scholar
  24. Urey, H. C.: 1955, Proc. Nat. Acad. Sci. 41, 127.Google Scholar
  25. Wallis, M. K.: 1980, Nature 284, 431.Google Scholar
  26. Weidenschilling, S. J.: 2000, Lunar Planet. Sci. Conf. XXXI, 1684.Google Scholar
  27. Weizman, A., Prialnik, D., and Podolak, M.: 1997, J. Geophys. Res. 102, 9205.Google Scholar
  28. Wetherill, G. W. and Stewart, G. R.: 1989, Icarus 77, 330.Google Scholar
  29. Wetherill, G. W. and Stewart, G. R.: 1993, Icarus 106, 190.Google Scholar
  30. Whipple, F. L. and Stefanik, R. P.: 1966, Mem. Roy. Soc. Liege (Ser. 5) 12, 33.Google Scholar
  31. Yabushita, S.: 1993, Mon. Not. R. Astron. Soc. 260, 819.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rainer Merk
    • 1
  • Dina Prialnik
    • 1
  1. 1.Department of Geophysics and Planetary Sciences, Sackler Faculty of Exact SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations