Skip to main content

Comparison and Evaluation of Multiple Objective Genetic Algorithms for the Antenna Placement Problem

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The antenna placement problem, or cell planning problem, involves locating and configuring infrastructure for cellular wireless networks. From candidate site locations, a set needs to be selected against objectives relating to issues such as financial cost and service provision. This is an NP-hard optimization problem and consequently heuristic approaches are necessary for large problem instances. In this study, we use a greedy algorithm to select and configure base station locations. The performance of this greedy approach is dependent on the order in which the candidate sites are considered. We compare the ability of four state-of-the-art multiple objective genetic algorithms to find an optimal ordering of potential base stations. Results and discussion on the performance of the algorithms are provided.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    E.H.L. Aarts and J.H.M. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New York, 1989).

    Google Scholar 

  2. [2]

    R.G. Akl, M.V. Hedge, M. Naraghi-Pour and P.S. Min, Multicell CDMA network design, IEEE Transactions on Vehicular Technology 50 (2001) 711–722.

    Google Scholar 

  3. [3]

    S.M. Allen, S. Hurley, R.K. Taplin and R.M. Whitaker, Automatic cell planning of broadband fixed wireless networks, in: Proc. of the IEEE VTC Conf. (Spring), Rhodes, Greece (May 2001) pp. 2808–2812.

  4. [4]

    E. Amaldi, A. Capone and F. Malucelli, Improved models and algorithms for UMTS radio planning, in: Proc. of the 54th IEEE Conf. on Vehicular Technology, Vol. 2 (2001) pp. 920–924.

    Google Scholar 

  5. [5]

    E. Amaldi, A. Capone and F. Malucelli, Optimizing base station siting in UMTS networks, in: Proc. of the 53th IEEE Conf. on Vehicular Technology, Vol. 4 (2001) pp. 2828–2832.

    Google Scholar 

  6. [6]

    H.R. Anderson and J.P. McGeehan, Optimizing microcell base station locations using simulated annealing techniques, in: Proc. of the 44th IEEE Conf. on Vehicular Technology (1994) pp. 858–862.

  7. [7]

    S. Bleuler, M. Brack, L. Thiele and E. Zitzler, Multiobjective genetic programming: Reducing bloat using SPEA2, in: Proc. of the Congress on Evolutionary Computation 2001, Vol. 1 (2001) pp. 536–543.

    Google Scholar 

  8. [8]

    P. Calegari, F. Guidec, P. Kuonen and D. Wagner, Genetic approach to radio network optimizations for mobile systems, in: Proc. of the 47th IEEE Conf. on Vehicular Technology, Vol. 2 (1997) pp. 755–759.

    Google Scholar 

  9. [9]

    B. Chamaret, S. Josselin, P. Kuonen, M. Pizarroso, B. Salas-Manzanedo, S. Ubeda and D. Wagner, Radio network optimization with maximum independent set search, in: Proc. of the IEEE VTC'97 Conf., Phoenix, AZ (May 1997) pp. 770–774.

  10. [10]

    D.W. Corne, J.D. Knowles and M.J. Oates, The Pareto envelope-based selection algorithm for multiobjective optimization, in: Proc. of the Sixth Internat. Conf. on Parallel Problem Solving from Nature (2000) pp. 839–848.

  11. [11]

    M.S. Daskin, Network and Discrete Location (Wiley, New York, 1995).

    Google Scholar 

  12. [12]

    K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, New York, 2001).

    Google Scholar 

  13. [13]

    K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in: Lecture Notes in Computer Science, Vol. 1917 (Springer, New York, 2000) pp. 848–849.

    Google Scholar 

  14. [14]

    K. Deb, L. Thiele, M. Laumanns and E. Zitzler, Scalable test problems for evolutinary multi-objective optimization, Kangal Report No. 2001001 (2001) 1–27.

  15. [15]

    E. Ekici and C. Ersoy, Multitier cellular network dimensioning, Wireless Networks 7 (2001) 401–411.

    Google Scholar 

  16. [16]

    C.M. Fonseca and P.J. Fleming, On the performance assessment and comparison of stochastic multiobjective optimizers, in: Fourth Internat. Conf. on Parallel Problem Solving from Nature (1996) pp. 584–593.

  17. [17]

    M. Galota, C. Glasser, S. Reith and H. Vollmer, A polynomial-time approximation scheme for base station positioning in UMTS networks, in: Proc. of the 5th Internat. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Rome, Italy (July 2001) pp. 52–59.

  18. [18]

    A. Ganz, C.M. Krishna, D. Tang and Z.J. Haas, On optimal design of multiter wireless cellular systems, IEEE Communications Magazine (February 1997) 88–93.

  19. [19]

    F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences 8 (1977) 156–166.

    Google Scholar 

  20. [20]

    F. Glover, E. Taillard and D. de Werra, A user's guide to tabu search, Annals of Operations Research 41 (1993) 3–28.

    Google Scholar 

  21. [21]

    J.K. Han, B.S. Park, Y.S. Choi and H.K. Park, Genetic approach with a new representation base station placement in mobile communications, in: Proc. of the 54th IEEE Conf. on Vehicular Technology, Vol. 4 (2001) pp. 2703–2707.

    Google Scholar 

  22. [22]

    M. Hata, Empirical formula for propogation loss in land mobile radio services, IEEE Transactions on Vehicular Technology 29(3) (1980) 317–325.

    Google Scholar 

  23. [23]

    J.H. Holland, ed., Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975).

    Google Scholar 

  24. [24]

    I. Howitt and S.-Y. Ham, Base station location optimization, in: Proc. of the IEEE VTC'99 Conf., Vol. 4 (1999) pp. 2067–2071.

    Google Scholar 

  25. [25]

    X. Huang, U. Behr and W. Wiesbeck, Automatic cell planning for a low-cost and spectrum efficient wireless network, in: Proc. of Global Telecommunications Conf. (GLOBECOM), Vol. 1 (2000) pp. 276–282.

    Google Scholar 

  26. [26]

    S. Hurley, Planning effective cellular mobile radio networks, IEEE Transactions on Vehicular Technology 51(2) (2002) 243–253.

    Google Scholar 

  27. [27]

    S. Hurley, D.H. Smith and C.L. Valenzuela, A permutation-based genetic algorithm for minimum span frequency assignment, in: Lecture Notes in Computer Science, Vol. 1498 (Springer, New York, 1998) pp. 907–916.

    Google Scholar 

  28. [28]

    L.J. Ibbetson and L.B. Lopes, An automatic base station placement algorithm, in: Proc. of the IEEE VTC'97 Conf., Phoenix, AZ (May 1997) pp. 770–774.

  29. [29]

    V. Khare, X. Yao and K. Deb, Performance scaling of multiobjective evolutionary algorithms, KanGAL Report No. 2002009 (2002) pp. 1–15.

  30. [30]

    J.D. Knowles, Local-search and hybrid evolutionary algorithms for Pareto optimization, Ph.D. thesis, The University of Reading (2002).

  31. [31]

    I. Laki, L. Farkas and L. Nagy, Cell planning in mobile communication systems using SGA optimization, in: Proc. of Internat. Conf. on Trends in Communications, Vol. 1 (2001) pp. 124–127.

    Google Scholar 

  32. [32]

    C.Y. Lee and H.G. Kang, Cell planning with capacity expansion in mobile communications: A tabu search approach, IEEE Transactions on Vehicular Technology 49(5) (2000) 1678–1691.

    Google Scholar 

  33. [33]

    R.M. Mathar and T. Niessen, Optimum positioning of base stations for cellular radio networks, Wireless Networks 6 (2000) 421–428.

    Google Scholar 

  34. [34]

    R.M. Mathar and M. Schmeink, Optimal base station positioning and channel assignment for 3G mobile networks by integer programming, Annals of Operations Research 107 (2001) 225–236.

    Google Scholar 

  35. [35]

    R.M. Mathar and M. Schmeink, Integrated optimal cell site selection and frequency allocation for cellular radio networks, Telecommunication Systems 21 (2002) 339–347.

    Google Scholar 

  36. [36]

    H. Meunier, E. Talbi and P. Reininger, A multiobjective genetic algorithm for radio network optimization, in: Proc. of the 2000 Congress on Evolutionary Computation, Vol. 1 (2000) pp. 317–324.

    Google Scholar 

  37. [37]

    A. Molina, G.E. Athanasiadou and A.R. Nix, The automatic location of base-stations for optimised cellular coverage: A new combinatorial approach, in: Proc. of the IEEE VTC'99 Conf. (1999) pp. 606–610.

  38. [38]

    A. Molina, G.E. Athanasiadou and A.R. Nix, Optimised base-station location algorithm for next generation microcellular networks, Electronics Letters 36(7) (2000) 668–669.

    Google Scholar 

  39. [39]

    A. Molina, G.E. Nix and A.R. Athanasiadou, The effects of delay spread for cellular network planning using the combination algorithm for total optimisation, in: Proc. of the 1st Internat. Conf. on 3G Mobile Communication Technologies (2000) pp. 171–175.

  40. [40]

    P. Reininger, S. Iksal, A. Caminada and J.J. Korczak, Multi-stage optimization for mobile radio network planning, in: Proc. of the IEEE VTC'99 Conf., Vol. 3 (1999) pp. 2034–2038.

    Google Scholar 

  41. [41]

    J. Schott, Fault tolerant design using simple multicriteria genetic algorithms, Ph.D. thesis, M.S. thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA (1995).

    Google Scholar 

  42. [42]

    H.D. Sherali, C.H. Pendyala and T.S. Rappaport, Optimal location of transmitters for micro-cellular radio communication system design, IEEE Journal on Selected Areas in Communications 14(4) (1996) 662–673.

    Google Scholar 

  43. [43]

    T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C. Whitley, A comparison of genetic sequencing operators, in: Proc. of the Fourth Internat. Conf. on Genetic Algorithms, eds. R. Belew and L. Booker (Morgan Kaufman, San Mateo, CA, 1991) pp. 69–76.

    Google Scholar 

  44. [44]

    D.-W. Tcha and Y.-S. Myung, Base station location in a cellular CDMA system, Telecommunication Systems 14 (2000) 163–173.

    Google Scholar 

  45. [45]

    K. Tutschku, Interference minimization using automatic design of cellular communication networks, in: Proc. of the IEEE VTC'98 Conf. (1998) pp. 634–638.

  46. [46]

    C.L. Valenzuela, A simple evolutionary algorithm for multi-objective optimisation(SEAMO), in: IEEE Congress on Evolutionary Computation (2002) pp. 717–722.

  47. [47]

    M. Vasquez and J.-K. Hao, A heuristic approach for antenna positioning in cellular networks, Journal of Heuristics 7 (2001) 443–472.

    Google Scholar 

  48. [48]

    D.A. Veldhuizen and G.B. Lamont, On measuring multiobjective evolutionary algorithm performance, in: Congress on Evolutionary Computation (2000) pp. 204–211.

  49. [49]

    R.M. Whitaker and S. Hurley, Omni-directional cell planning, in: Telecommunications Network Design and Management, eds. G. Anandalingam and S. Raghavan (Kluwer Academic, Dordrecht, 2002) chapter 2, pp. 25–41.

    Google Scholar 

  50. [50]

    R.M. Whitaker and S. Hurley, The state-of-the-art in automatic cell planning, submitted for publication.

  51. [51]

    J.K.L. Wong, M.J. Neve and K.W. Sowerby, Optimisation strategy for wireless communications system planning using linear programming, IEE Electronics Letters 37(17) (2001) 1086–1087.

    Google Scholar 

  52. [52]

    M.H. Wright, Optimization methods for base station placement in wireless systems, in: Proc. of the IEEE VTC'98 Conf. (1998) pp. 387–391.

  53. [53]

    J. Zimmermann, R. Hons and H. Muhlenbein, ENCON: Evolutionary algorithm for the antenna placement problem, Computers and Industrial Engineering 44 (2003) 209–226.

    Google Scholar 

  54. [54]

    E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, TIK-Schriftenreihe Nr. 30 (1999).

    Google Scholar 

  55. [55]

    E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland (2001).

    Google Scholar 

  56. [56]

    E. Zitzler, M. Laumanns, L. Thiele, C. Fonseca and G. da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, Technical Report 139, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland (2002).

    Google Scholar 

  57. [57]

    E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms — a comparative case study, in: Parallel Problem Solving from Nature (1998) pp. 292–301.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raisanen, L., Whitaker, R.M. Comparison and Evaluation of Multiple Objective Genetic Algorithms for the Antenna Placement Problem. Mobile Networks and Applications 10, 79–88 (2005). https://doi.org/10.1023/B:MONE.0000048547.84327.95

Download citation

  • genetic algorithms
  • antenna placement