Skip to main content

Biodistribution of filamentous phage peptide libraries in mice

Abstract

In vivo phage display is a new approach to acquire peptide molecules that bind stably to a given target. Phage peptide display libraries have been selected in mice and humans and numerous vasculature-targeting peptides have been reported. However, in vivo phage display has not typically produced molecules that extravasate to target specific organ or tumor antigens. Phage selections in animals have been performed for very short times without optimization for biodistribution or clearance rates to a particular organ. It is hypothesized that peptides that home to a desired antigen/organ can be obtained from in vivo phage experiments by optimization of incubation times, phage extraction and propagation procedures. To accomplish this goal, one must first gain a better understanding of the in vivo biodistribution and rate of clearance of engineered phage peptide display libraries. While the fate of wild type phage in rodents has been reported, the in vivo biodistribution of the commonly used engineered fd-tet M13 phage peptide display libraries (such as in the fUSE5 vector system) have not been well established. Here we report the biodistribution and clearance properties of fd-tet fifteen amino acid random peptide display libraries in fUSE5 phage in three common mouse models employed for drug discovery – CF-1, nude, and SCID mice.

References

  1. 1.

    Smith GP & Petrenko VA (1997) Chem. Rev. 97: 391–410.

    Google Scholar 

  2. 2.

    Barbas CF, 3rd, Hu D, Dunlop N, Sawyer L, Cababa D, Hendry RM, Nara PL & Burton DR (1994) Proc. Nat. Acad. Sci. USA 91: 3809–3813.

    Google Scholar 

  3. 3.

    Scott JK, Loganathan D, Easley RB, Gong X & Goldstein IJ (1992) Proc. Nat. Acad. Sci. USA 89: 5398–5402.

    Google Scholar 

  4. 4.

    Dreier B, Beerli RR, Segal DJ, Flippin JD & Barbas CF, 3rd (2001) J. Biol. Chem. 276: 29466–29478.

    Google Scholar 

  5. 5.

    Agris PF, Marchbank MT, Newman W, Guenther R, Ingram P, Swallow J, Mucha P, Szyk A, Rekowski P, Peletskaya E & Deutscher SL (1999) J. Prot. Chem. 18: 425–435.

    Google Scholar 

  6. 6.

    Smith GP (1985) Science 228: 1315–1317.

    Google Scholar 

  7. 7.

    Scott JK & Smith GP (1990) Science 249: 386–390.

    Google Scholar 

  8. 8.

    Pratt D, Tzagoloff H & Beaudoin J (1969) Virology 39: 42–53.

    Google Scholar 

  9. 9.

    Hoess RH (2001) Chem. Rev. 101: 3205–3218.

    Google Scholar 

  10. 10.

    Smith GPLH (2003) http://www.biosci.missouri.edu/smithGP/.

  11. 11.

    Bastien N, Trudel M & Simard C (1997) Virology 234: 118–122.

    Google Scholar 

  12. 12.

    Demangel C, Lafaye P & Mazie JC (1996) Molec. Immunol. 33: 909–916.

    Google Scholar 

  13. 13.

    Grabowska AM, Jennings R, Laing P, Darsley M, Jameson CL, Swift L & Irving WL (2000) Virology 269: 47–53.

    Google Scholar 

  14. 14.

    Wan Y, Wu Y, Bian J, Wang XZ, Zhou W, Jia ZC, Tan Y & Zhou L (2001) Vaccine 19: 2918–2923.

    Google Scholar 

  15. 15.

    De Berardinis P, Sartorius R, Fanutti C, Perham RN, Del Pozzo G & Guardiola J (2000) Nat. Biotechnol. 18: 873–876.

    Google Scholar 

  16. 16.

    Gaubin M, Fanutti C, Mishal Z, Durrbach A, De Berardinis P, Sartorius R, Del Pozzo G, Guardiola J, Perham RN & Piatier-Tonneau D (2003) DNA Cell Biol. 22: 11–18.

    Google Scholar 

  17. 17.

    Willis AE, Perham RN & Wraith D (1993) Gene 128: 79–83.

    Google Scholar 

  18. 18.

    Johnson DL, Farrell FX, Barbone FP, McMahon FJ, Tullai J, Hoey K, Livnah O, Wrighton NC, Middleton SA, Loughney DA, Stura EA, Dower WJ, Mulcahy LS, Wilson IA & Jolliffe LK (1998) Biochemistry 37: 3699–3710.

    Google Scholar 

  19. 19.

    Atwell S & Wells JA (1999) Proc. Nat. Acad. Sci. USA 96: 9497–9502.

    Google Scholar 

  20. 20.

    Peletskaya EN, Glinsky VV, Glinsky GV, Deutscher SL & Quinn TP (1997) J. Molec. Biol. 270: 374–384.

    Google Scholar 

  21. 21.

    Landon LA, Peletskaya EN, Glinsky VV, Karasseva N, Quinn TP & Deutscher SL (2003) J. Prot. Chem. 22: 193–204.

    Google Scholar 

  22. 22.

    Pasqualini R & Ruoslahti E (1996) Nature 380: 364–366.

    Google Scholar 

  23. 23.

    Arap W, Pasqualini R & Ruoslahti E (1998) Science 279: 377–380.

    Google Scholar 

  24. 24.

    Pasqualini R, Koivunen E & Ruoslahti E (1997) Nat. Biotechnol. 15: 542–546.

    Google Scholar 

  25. 25.

    Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R & Ruoslahti E (2002) Proc. Nat. Acad. Sci. USA 99: 1527–1531.

    Google Scholar 

  26. 26.

    Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R & Corti A (2002) Cancer Res. 62: 867–874.

    Google Scholar 

  27. 27.

    Essler M & Ruoslahti E (2002) Proc. Nat. Acad. Sci. USA 99: 2252–2257.

    Google Scholar 

  28. 28.

    Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ & Pasqualini R (2002) Nat. Med. 8: 121–127.

    Google Scholar 

  29. 29.

    Pasqualini R & Arap W (2002) An. Hematol. 81: S66–S67.

    Google Scholar 

  30. 30.

    Pasqualini R, McDonald DM & Arap W (2001) Nat. Immunol. 2: 567–568.

    Google Scholar 

  31. 31.

    Asai T, Nagatsuka M, Kuromi K, Yamakawa S, Kurohane K, Ogino K, Tanaka M, Taki T & Oku N (2002) FEBS Lett. 510: 206–210.

    Google Scholar 

  32. 32.

    Asai T, Fukatsu H, Kuromi K, Ogino K, Tanaka M, Oku N & Taki T (2002) Biol. Pharm. Bull. 25: 904–906.

    Google Scholar 

  33. 33.

    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP & Jain RK (1998) Proc. Nat. Acad. Sci. USA 95: 4607–4612.

    Google Scholar 

  34. 34.

    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK & McDonald DM (2000) Am. J. Pathol. 156: 1363–1380.

    Google Scholar 

  35. 35.

    McDonald DM & Baluk P (2002) Cancer Res. 62: 5381–5385.

    Google Scholar 

  36. 36.

    Landon LA & Deutscher SL (2003) J. Cell. Biochem. 90: 509–517.

    Google Scholar 

  37. 37.

    Shultz LD & Sidman CL (1987) Ann. Rev. Immunol. 5: 367–403.

    Google Scholar 

  38. 38.

    Bosma MJ (1992) Immunodeficiency Rev. 3: 261–276.

    Google Scholar 

  39. 39.

    Nonoyama S & Ochs HD (1996) Internat. Rev. Immunol. 13: 289–300.

    Google Scholar 

  40. 40.

    Szabo P, Zhao K, Kirman I, Le Maoult J, Dyall R, Cruikshank W & Weksler ME (1998) J. Immunol. 161: 2248–2253.

    Google Scholar 

  41. 41.

    Krishna R, Webb MS, St Onge G & Mayer LD (2001) Journal of Pharmacol. Experiment. Therapeut. 298: 1206–1212.

    Google Scholar 

  42. 42.

    Pastorino F, Brignole C, Marimpietri D, Sapra P, Moase EH, Allen TM & Ponzoni M (2003) Cancer Res. 63: 86–92.

    Google Scholar 

  43. 43.

    Gabizon A, Shmeeda H & Barenholz Y (2003) Clin. Pharmacokinetics 42: 419–436.

    Google Scholar 

  44. 44.

    Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S & Margolin AL (2003) Proc. Nat. Acad. Sci. USA 100: 6934–6939.

    Google Scholar 

  45. 45.

    Yang XD, Corvalan JR, Wang P, Roy CM & Davis CG (1999) J. Leukocyte Biol. 66: 401–410.

    Google Scholar 

  46. 46.

    Motulsky HJ & Ransnas LA (1987) FASEB J. 1: 365–374.

    Google Scholar 

  47. 47.

    Lindstrom ML & Bates DM (1990) Biometrics 46: 673–687.

    Google Scholar 

  48. 48.

    Steimer JL, Mallet A, Golmard JL & Boisvieux JF (1984) Drug Metabolism Rev. 15: 265–292.

    Google Scholar 

  49. 49.

    Geier MR, Trigg ME & Merril CR (1973) Nature 246: 221–223.

    Google Scholar 

  50. 50.

    Uhr JW & Weissman G (1965) J. Immunol. 94: 544–550.

    Google Scholar 

  51. 51.

    Inchley CJ (1970) J. Immunol. 104: 14–18.

    Google Scholar 

  52. 52.

    Inchley CJ & Howard JG (1969) Clin. Experiment. Immunol. 5: 189–198.

    Google Scholar 

  53. 53.

    Inchley CJ (1969) Clin. Experiment. Immunol. 5: 173–187.

    Google Scholar 

  54. 54.

    Ivanenkov VV, Felici F & Menon AG (1999) Biochim. Biophys. Acta. 1448: 463–472.

    Google Scholar 

  55. 55.

    Molenaar TJ, de Hass SA, van Berkel TJ, Kuiper J & Biessen EA (2002) Virology 293: 182–183.

    Google Scholar 

  56. 56.

    Yip YL, Hawkins NJ, Smith G & Ward RL (1999) J. Immunol. Meth. 225: 171–178.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zou, J., Dickerson, M.T., Owen, N.K. et al. Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 31, 121–129 (2004). https://doi.org/10.1023/B:MOLE.0000031459.14448.af

Download citation

  • bacteriophage display
  • in vivo biodistribution
  • organ targeting
  • peptide libraries