Skip to main content
Log in

Caveolae: biochemical analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

aveolae appear in a multitude of processes encompassing growth regulation andtrafficking. We demonstrate the abundant presence of ESA/reggie-1/flotillin-2,ATP synthase β subunit and annexin V in endothelial caveolae byimmunopurification of caveolae from vascular endothelial membrane. Fiveproteins are abundant in a caveolin-1 protein complex, analyzed by sucrosegradient velocity sedimentation following octyl-β-D-glucopyranosideextraction. Caveolin-1 α interacts with caveolin-1 β, caveolin-2, actin,the microsomal form of NADH cytochrome B5 reductase and ESA/reggie-1/flotillin-2as shown by co-immunoprecipitation. We propose the concept that ATP biosynthesisin caveolae regulates mechanosignaling and is induced by membrane depolarizationand a proton gradient. Pressure stimuli and metabolic changes may trigger generegulation in endothelial cells, involving a nuclear conformer of caveolin-1,shown here with an epitope-specific caveolin-1 antibody, and immediate responseof ion channel activity, regulated by ESA/reggie-1/flotillin-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis M.J. and Hill M.A. 1999. Physiol. Rev. 79: 387–423.

    Google Scholar 

  2. Kamiya A., Michikami D., Fu Q., Iwase S., Hayano J., Kawada T., Mano T. and Sunagawa K. 2003. Am. J. Physiol. Heart Circ. Physiol. 285: H1158–1167.

    Google Scholar 

  3. Palmer R.M.J., Ferrige A.G. and Moncada S. 1987. Nature 327: 524–526.

    Google Scholar 

  4. Bucci M., Gratton J.P., Rudic R.D., Acevedo L., Roviezzo F., Cirino G. and Sessa W.C. 2000. Nature Med. 6: 1362–1367.

    Google Scholar 

  5. Rizzo V., McIntosh D.P., Oh P. and Schnitzer J.E. 1998. J. Biol. Chem. 273: 34724–34729.

    Google Scholar 

  6. Czarny M., Liu J., Oh P. and Schnitzer J.E. 2003. J. Biol. Chem. 278: 4424–4430.

    Google Scholar 

  7. Boyd N.L., Park H., Yi H., Boo Y.C., Sorescu G.P., Sykes M. and Jo H. 2003. Am. J. Physiol. Heart Circ. Physiol. 285: H1113–1122.

    Google Scholar 

  8. Parat M.-O., Anand-Apte B. and Fox P.L. 2003. Mol. Biol. Cell 14: 3156–3168.

    Google Scholar 

  9. Stan R.V., Roberts W.G., Predescu D., Ihida K., Saucan L., Ghitescu L. and Palade G.E. 1997. Mol. Biol. Cell 8: 595–605.

    Google Scholar 

  10. Oh P. and Schnitzer J.E. 1999. J. Biol. Chem. 274: 23144–54.

    Google Scholar 

  11. Oh P. and Schnitzer J.E. 2001. Mol. Biol. Cell 12: 685–98.

    Google Scholar 

  12. Simons K. and Toomre D. 2000. Nat. Rev. Mol. Cell Biol. 1: 31–39.

    Google Scholar 

  13. Razani B., Engelman J.A., Wang X.B., Schubert W., Zhang X.L., Marks C.B., Macaluso F., Russell R.G., Li M., Pestell R.G., Di Vizio D., Hou H., Kneitz B., Lagaud G., Christ G.J., Edelman W. and Lisanti M.P. 2001. J. Biol. Chem. 276: 38121–38138.

    Google Scholar 

  14. Drab M., Verkade P., Elger M., Kasper M., Lohn M., Lauterbach B., Menne J., Lindschau C., Mende F., Luft F.C., Schedl A., Haller H. and Kurzchalia T.V. 2001. Science 293: 2449–2452.

    Google Scholar 

  15. Souto R.P., Vallega G., Wharton J., Vinten J., Tranum-Jensen J. and Pilch P.F. 2003. J. Biol. Chem. 278: 18321–18329.

    Google Scholar 

  16. Liu L., Mohammadi K., Aynafshar B., Wang H., Li D., Liu J., Ivanov A.V., Xie Z. and Askari A. 2003. Am. J. Physiol. Cell Physiol. 284: C1550–C1560.

    Google Scholar 

  17. Teubl M., Groschner K., Kohlwein S.D., Mayer B. and Schmidt K. 1999. J. Biol. Chem. 274: 29529–35.

    Google Scholar 

  18. Bossuyt J., Taylor B.E., James-Kracke M. and Hale C.C. 2002. FEBS Letters 511: 113–7.

    Google Scholar 

  19. Agin D. 1972. Excitability phenomena in membranes, in: Rosen, R. (Eds.), Foundations of mathematical biology. Academic Press, New York and London, pp. 253–277.

    Google Scholar 

  20. Kurzchalia T.V., Dupree P., Parton R.G., Kellner R., Virta H., Lehnert M. and Simons K. 1992. J. Cell Biol. 118: 1003–1014.

    Google Scholar 

  21. Conrad P.A., Smart E.J., Ying Y.S., Anderson R.G.W. and Bloom G.S. 1995. J. Cell Biol. 131: 1421–1433.

    Google Scholar 

  22. Thomsen P., Roepstorff K., Stahlhut M. and van Deurs B. 2002. Mol. Biol. Cell 13: 238–50.

    Google Scholar 

  23. Pelkmans L., Puntener D. and Helenius A. 2002. Science 296: 535–9.

    Google Scholar 

  24. Parton R.G., Way M., Zorzi N. and Stang E. 1997. J. Cell Biol. 136: 137–54.

    Google Scholar 

  25. Hamill O.P. and Martinac B. 2001. Physiol. Rev. 81: 685–740.

    Google Scholar 

  26. Ernstrom G.G. and Chalfie M. 2002. Annu. Rev. Genet. 36: 411–453.

    Google Scholar 

  27. Geiger B. and Bershadsky A. 2001. Curr. Opin. Cell Biol. 13: 584–92.

    Google Scholar 

  28. Naruse K. and Sokabe M. 1993. Am. J. Physiol. Cell Physiol. 264: C1037–C1044.

    Google Scholar 

  29. Ordway R.W., Walsh J.V., Jr. and Singer J.J. 1989. Science 244: 1176–9.

    Google Scholar 

  30. Kim D. and Clapham D.E. 1989. Science 244: 1174–6.

    Google Scholar 

  31. Busse R. and Fleming I. 2003. TiPS 24: 24–29.

    Google Scholar 

  32. Gudi S., Nolan J.P. and Frangos J.A. 1998. Proc. Natl. Acad. Sci. 95: 2515–9.

    Google Scholar 

  33. Smith M.L., Long D.S., Damiano E.R. and Ley K. 2003. Biophys. J. 85: 637–645.

    Google Scholar 

  34. Illi B., Nanni S., Scopece A., Farsetti A., Biglioli P., Capogrossi M.C. and Gaetano C. 2003. Circ. Res. 93: 155–61.

    Google Scholar 

  35. Moser T.L., Kenan D.J., Ashley T.A., Roy J.A., Goodman M.D., Misra U.K., Cheek D.J. and Pizzo S.V. 2001. Proc. Natl. Acad. Sci. 98: 6656–61.

    Google Scholar 

  36. Runswick M.J. and Walker J.E. 1983. J. Biol. Chem. 258: 3081–9.

    Google Scholar 

  37. Mourier T., Hansen A.J., Willerslev E. and Arctander P. 2001. Mol. Biol. Evol. 18: 1833–1837.

    Google Scholar 

  38. Esnault C., Maestre J. and Heidmann T. 2000. Nat. Genet. 24: 363–367.

    Google Scholar 

  39. Chittum H.S., Lane W.S., Carlson B.A., Roller P.P., Lung F.D., Lee B.J. and Hatfield D.L. 1998. Biochemistry 37: 10866–70.

    Google Scholar 

  40. Moser T.L., Stack M.S., Asplin I., Enghild J.J., Hojrup P., Everitt L., Hubchak S., Schnaper H.W. and Pizzo S.V. 1999. Proc. Natl. Acad. Sci. 96: 2811–6.

    Google Scholar 

  41. Martinez L.O., Jacquet S., Esteve J.-P., Rolland C., Cabezon E., Champagne E., Pineau T., Georgeaud V., Walker J.E., Terce F., Collet X., Perret B. and Barbaras R. 2003. Nature 421: 75–79.

    Google Scholar 

  42. Di Virgilio F., Chiozzi P., Ferrari D., Falzoni S., Sanz J.M., Morelli A., Torboli M., Bolognesi G. and Baricordi O.R. 2001. Blood 97: 587–600.

    Google Scholar 

  43. Smalheiser N.R. 1996. Mol. Biol. Cell 7: 1003–14.

    Google Scholar 

  44. Nakamura F. and Strittmatter S.M. 1996. Proc. Natl. Acad. Sci. 93: 10465–70.

    Google Scholar 

  45. Bodin P. and Burnstock G. 2001. J. Cardiovasc. Pharmacol. 38: 900–8.

    Google Scholar 

  46. Bankston L.A. and Guidotti G. 1996. J. Biol. Chem. 271: 17132–8.

    Google Scholar 

  47. Anderson R.G.W. 1993. Proc. Natl. Acad. Sci. 90: 10909–10913.

    Google Scholar 

  48. Schroeder W.T., Stewart-Galetka S., Mandavilli S., Parry D.A., Goldsmith L. and Duvic M. 1994. J. Biol. Chem. 269: 19983–19991.

    Google Scholar 

  49. Bickel P.E., Scherer P.E., Schnitzer J.E., Oh P., Lisanti M.P. and Lodish H.F. 1997. J. Biol. Chem. 272: 13793–13802.

    Google Scholar 

  50. Schulte T., Paschke K.A., Laessing U., Lottspeich F. and Stuermer C.A. 1997. Development 124: 577–587.

    Google Scholar 

  51. Morrow I.C., Rea S., Martin S., Prior I.A., Prohaska R., Hancock J.F., James D.E. and Parton R.G. 2002. J. Biol. Chem. 277: 48834–48841.

    Google Scholar 

  52. Goodman M.B., Ernstrom G.G., Chelur D.S., O'Hagan R., Yao C.A. and Chalfie M. 2002. Nature 415: 1039–42.

    Google Scholar 

  53. Lang D.M., Lommel S., Jung M., Ankerhold R., Petrausch B., Laessing U., Wiechers M.F., Plattner H. and Stuermer C.A. 1998. J. Neurobiol. 37: 502–523.

    Google Scholar 

  54. Braet F., Spector I., DeZanger R. and Wisse E. 1998. Proc. Natl. Acad. Sci. 95: 13635–13640.

    Google Scholar 

  55. Stahlhut M. and vanDeurs B. 2000. Mol. Biol. Cell 11: 325–337.

    Google Scholar 

  56. Dupree P., Parton R.G., Raposo G., Kurzchalia T.V. and Simons K. 1993. EMBO J. 12: 1597–1605.

    Google Scholar 

  57. Nomura R. and Fujimoto T. 1999. Mol. Biol. Cell 10: 975–986.

    Google Scholar 

  58. Sargiacomo M., Scherer P.E., Tang Z.L., Kubler E., Song K.S., Sanders M.C. and Lisanti M.P. 1995. Proc. Natl. Acad. Sci. 92: 9407–9411.

    Google Scholar 

  59. Monier S., Parton R.G., Vogel F., Behlke J., Henske A. and Kurzchalia T.V. 1995. Mol. Biol. Cell 6: 911–927.

    Google Scholar 

  60. Volonte D., Galbiati F., Li S., Nishiyama K., Okamoto T. and Lisanti M.P. 1999. J. Biol. Chem. 274: 12702–12709.

    Google Scholar 

  61. Berendes R., Voges D., Demange P., Huber R. and Burger A. 1993. Science 262: 427–30.

    Google Scholar 

  62. Demange P., Voges D., Benz J., Liemann S., Gottig P., Berendes R., Burger A. and Huber R. 1994. Trends Biochem. Sci. 19: 272–6.

    Google Scholar 

  63. Cardo-Vila M., Arap W. and Pasqualini R. 2003. Mol. Cell 11: 1151–62.

    Google Scholar 

  64. Andersen M.H., Berglund L., Petersen T.E. and Rasmussen J.T. 2002. Biochem. Biophys. Res. Commun. 292: 550–7.

    Google Scholar 

  65. Pietrini G., Carrera P. and Borgese N. 1988. Proc. Natl. Acad. Sci. 85: 7246–50.

    Google Scholar 

  66. Borgese N., Aggujaro D., Carrera P., Pietrini G. and Bassetti M. 1996. J. Cell Biol. 135: 1501–13.

    Google Scholar 

  67. Anderson R.G.W. 1998. Annu. Rev. Biochem. 67: 199–225.

    Google Scholar 

  68. Liu P., Rudick M. and Anderson R.G.W. 2002. J. Biol. Chem. 277: 41295–41298.

    Google Scholar 

  69. Parton R.G. 2003. Nature Rev. Mol. Biol. 4: 162–167.

    Google Scholar 

  70. Marchesan D., Rutberg M., Andersson L., Asp L., Larsson T., Boren J., Johansson B.R. and Olofsson S.-O. 2003. J. Biol. Chem. 278: 27293–27300.

    Google Scholar 

  71. Li W.P., Liu P.S., Pilcher B.K. and Anderson R.G.W. 2001. J. Cell Sci. 114: 1397–1408.

    Google Scholar 

  72. Schlegel A., Schwab R.B., Scherer P.E. and Lisanti M.P. 1999. J. Biol. Chem. 274: 22660–22667.

    Google Scholar 

  73. Schlegel A. and Lisanti M.P. 2000. J. Biol. Chem. 275: 21605–21617.

    Google Scholar 

  74. Arbuzova A., Wang L., Wang J., Hangyas-Mihalyne G., Murray D., Honig B. and McLaughlin S. 2000. Biochemistry 39: 10330–9.

    Google Scholar 

  75. Li S., Okamoto T., Chun M., Sargiacomo M., Casanova J.E., Hansen S.H., Nishimoto I. and Lisanti M.P. 1995. J. Biol. Chem. 270: 15693–15701.

    Google Scholar 

  76. Fujimoto T., Nakade S., Miyawaki A., Mikoshiba K. and Ogawa K. 1992. J. Cell Biol. 119: 1507–13.

    Google Scholar 

  77. Trouet D., Nilius B., Jacobs A., Remacle C., Droogmans G. and Eggermont J. 1999. J. Physiol. 520: 113–119.

    Google Scholar 

  78. Isshiki M., Ying Y.S., Fujita T. and Anderson R.G. 2002. J. Biol. Chem. 277: 43389–43398.

    Google Scholar 

  79. Georgievskii Y., Medvedev E.S. and Stuchebrukhov A.A. 2002. Biophys. J. 82: 2833–46.

    Google Scholar 

  80. Cherepanov D.A., Feniouk B.A., Junge W. and Mulkidjanian A.Y. 2003. Biophys. J. 85: 1307–1316.

    Google Scholar 

  81. Walker J.E., Collinson I.R., Van Raaij M.J. and Runswick M.J. 1995. Methods Enzymol. 260: 163–90.

    Google Scholar 

  82. Homolya L., Steinberg T.H. and Boucher R.C. 2000. J. Cell Biol. 150: 1349–1359.

    Google Scholar 

  83. Brown D.A. and London E. 1998. Annu. Rev. Cell Dev. Biol. 14: 111–136.

    Google Scholar 

  84. Sordella R., Jiang W., Chen G.-C., Curto M. and Settleman J. 2003. Cell 113: 147–158.

    Google Scholar 

  85. Roper K., Corbeil D. and Huttner W.B. 2000. Nat. Cell Biol. 2: 582–592.

    Google Scholar 

  86. Prior I.A., Parton R.G. and Hancock J.F. 2003. Sci STKE pI9.

  87. Brenner R., Perez G.J., Bonev A.D., Eckman D.M., Kosek J.C., Wiler S.W., Patterson A.J., Nelson M.T. and Aldrich R.W. 2000. Nature 407: 870–6.

    Google Scholar 

  88. Edwards G., Dora K.A., Gardener M.J., Garland C.J. and Weston A.H. 1998. Nature 396: 269–72.

    Google Scholar 

  89. Nilius B. and Droogmans G. 2001. Physiol. Rev. 81: 1415–59.

    Google Scholar 

  90. Schwiebert L.M., Rice W.C., Kudlow B.A., Taylor A.L. and Schwiebert E.M. 2002. Am. J. Physiol. Cell Physiol. 282: C289–301.

    Google Scholar 

  91. Zsembery A., Boyce A.T., Liang L., Peti-Peterdi J., Bell P.D. and Schwiebert E.M. 2003. J. Biol. Chem. 278: 13398–13408.

    Google Scholar 

  92. Schnermann J. and Levine D.Z. 2003. Annu. Rev. Physiol. 65: 501–529.

    Google Scholar 

  93. Inscho E.W., Cook A.K. and Navar L.G. 1996. Am. J. Physiol. 271: F1077–85.

    Google Scholar 

  94. Megson A.C., Dickenson J.M., Townsend-Nicholson A. and Hill S.J. 1995. Br. J. Pharmacol. 115: 1415–24.

    Google Scholar 

  95. Rohra D.K., Saito S.Y. and Ohizumi Y. 2003. Eur. J. Pharmacol. 465: 141–4.

    Google Scholar 

  96. Henttinen T., Jalkanen S. and Yegutkin G.G. 2003. J. Biol. Chem. 278: 24888–24895.

    Google Scholar 

  97. Wary K.K., Mainiero F., Isakoff S.J., Marcantonio E.E. and Giancotti F.G. 1996. Cell 87: 733–743.

    Google Scholar 

  98. Bischofs I.B. and Schwarz U.S. 2003. Proc. Natl. Acad. Sci. 100: 9274–9279.

    Google Scholar 

  99. Rogers M.J. and Strittmatter P. 1975. J. Biol. Chem. 250: 5713–8.

    Google Scholar 

  100. Oshino N., Imai Y. and Sato R. 1971. J. Biochem. Tokyo. 69: 155–67.

    Google Scholar 

  101. Okayasu T., Nagao M., Ishibashi T. and Imai Y. 1981. Arch. Biochem. Biophys. 206: 21–8.

    Google Scholar 

  102. Ishibashi T. and Bloch K. 1981. J. Biol. Chem. 256: 12962–7.

    Google Scholar 

  103. Strittmatter P., Spatz L., Corcoran D., Rogers M.J., Setlow B. and Redline R. 1974. Proc. Natl. Acad. Sci. 71: 4565–9.

    Google Scholar 

  104. Cantor R.S. 1999. Chem. Phys. Lipids. 101: 45–56.

    Google Scholar 

  105. Megli F.M., Selvaggi M., Liemann S., Quagliariello E. and Huber R. 1998. Biochemistry 37: 10540–6.

    Google Scholar 

  106. Razani B., Combs T.P., Wang X.B., Frank P.G., Park D.S., Russell R.G., Li M., Tang B., Jelicks L.A., Scherer P.E. and Lisanti M.P. 2002. J. Biol. Chem. 277: 8635–47.

    Google Scholar 

  107. Echevarria W., Leite M.F., Guerra M.T., Zipfel W.R. and Nathanson M.H. 2003. Nat. Cell Biol. 5: 440–6.

    Google Scholar 

  108. Jacobson B.S., Schnitzer J.E., McCaffery M. and Palade G.E. 1992. Eur. J. Cell Biol. 58: 296–306.

    Google Scholar 

  109. Tunon P. and Johansson K.E. 1984. J. Biochem. Biophys. Methods 9: 171–179.

    Google Scholar 

  110. Delbruck R., Desel C., von Figura K. and Hille-Rehfeld A. 1994. Eur. J. Cell Biol. 64: 7–14.

    Google Scholar 

  111. Pasquali C., Fialka I. and Huber L.A. 1997. Electrophoresis 18: 2573–81.

    Google Scholar 

  112. Yates J.R.d., Eng J.K., McCormack A.L. and Schieltz D. 1995. Anal. Chem. 67: 1426–36.

    Google Scholar 

  113. Fiedler K., Parton R.G., Kellner R., Etzold T. and Simons K. 1994. EMBO J. 13: 1729–1740.

    Google Scholar 

  114. Peränen J., Rikkonen M. and Kääriäinen L. 1993. J. Histochem. Cytochem. 41: 447–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatenay-Rivauday, C., Cakar, Z.P., Jenö, P. et al. Caveolae: biochemical analysis. Mol Biol Rep 31, 67–84 (2004). https://doi.org/10.1023/B:MOLE.0000031352.51910.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLE.0000031352.51910.e9

Keywords

Navigation