Skip to main content
Log in

Chemolabile cellular microarrays for screening small molecules and peptides

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Microarrays that mediate the uptake of small molecules into living cells are described. Tissue culture cells were seeded onto glass substrates functionalized locally with fluorescently labelled test substances. In order to enable a localized transferof substances after contact of cells with the substrate, substances were immobilized on the surface either by non-covalent interactions or chemolabile linker groups. These chemolabile linker groups were incorporated into covalently immobilized compounds. Different ester linkages were evaluated as chemolabile linker groups. As model compounds, esters of the carboxy group of a cysteine with the hydroxy groups of carboxyfluorescein-labelled serine amide and tyrosine amide residues or the thiol group of another fluorescein-labelled cysteine amide were generated. Covalent immobilization occurred on maleimide-functionalized glass cover slips. The surface functionalization and release kinetics were assessed by confocal laser scanning microscopy. The fastest release was obtained for the phenolic tyrosine ester. Alternatively, fluorescently labelled peptides were immobilized by non-covalent interactions on glass and on a hydrogel matrix. In order to increase the efficiency of cellular uptake, peptides were N-terminally extended with a cell-penetrating peptide. Uptake of these peptides into cells was confined to the functionalized spots, and was specificfor peptides extended with the cell-penetrating peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramsay, G., DNA chips- State-of-the-art, Nature Biotech., 16 (1998) 40-44.

    Google Scholar 

  2. Frank, R., High-density synthetic peptide microarrays: Emerging tools for functional genomics and proteomics, Combinatorial Chemistry and High Throughput Screening, 5 (2002) 429-440.

    PubMed  Google Scholar 

  3. Reimer, U., Reineke, U. and Schneider-Mergener, J., Peptide arrays: From macro to micro, Curr. Opin. Biotech., 13 (2002) 315-320.

    PubMed  Google Scholar 

  4. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. and Schreiber S. L., Dissecting glucose signalling with diversityoriented synthesis and small molecule microarrays, Nature, 416 (2002) 653-657.

    PubMed  Google Scholar 

  5. Oldenburg, K. R., Zhang, J.-H., Chen, T., Maffia III, A., Blom, K. F., Combs, A. P. and Chung, T. D. Y., Assay miniaturization for ulta-high throughput screening of combinatorial and discrete compound libraries: A 9600-well (0.2 microliter) assay system, J. Biomol. Screen., 3 (1998) 55-62.

    Google Scholar 

  6. Falsey, J. R., Renil, M., Park, S., Li, S. J. and Lam, K. S., Peptide and small molecule microarray for high throughput cell adhesion and functional assays, Bioconjugate Chem., 12 (2001) 346-353.

    Google Scholar 

  7. Schwenk, J. M., Stoll, D., Templin, M. F. and Joos, T. O., Cell microarrays: An emerging technology for the characterization of antibodies, BioTechniques, 33 (2003) S54-S61.

    Google Scholar 

  8. Ziauddin, J. and Sabatini, D. M., Microarrays of cells expressing defined cDNAs, Nature, 411 (2001) 107-110.

    PubMed  Google Scholar 

  9. Tsien, R. Y., The green fluorescent protein, Annu. Rev. Biochem., 67 (1998) 509-544.

    PubMed  Google Scholar 

  10. Derossi, D., Joliot, A. H., Chassaing, G., Prochiantz, A., The third helix of Antennapedia homeodomain translocates through biological membranes, J. Biol. Chem., 269(1994) 10444-10450.

    PubMed  Google Scholar 

  11. Fischer, R., Mader, O., Jung, G. and Brock, R., Extending the applicability of carboxyfluorescein in solid phase synthesis, Bioconjugate Chem., 14 (2003) 653-660.

    Google Scholar 

  12. Mattingly, P. G., Preparation of 5-and 6-(aminomethyl)fluorescein, Bioconjugate Chem., 3 (1992) 430-431.

    Google Scholar 

  13. MacBeath, G., Koehler, A. N. and Schreiber, S. L., Printing small molecules as microarrays and detecting protein- Ligand interactions en masse, J. Am. Chem. Soc., 121 (1999) 7967-7968.

    Google Scholar 

  14. Hosaka, Y., Yasuda, Y., Seriburi, O., Moran, M. G. and Fukai, K., In vitro secondary generation of cytotoxic T lymphocytes in mice with mumps virus and their mumps-specific cytotoxicity among paramyxoviruses, J. Virol., 57 (1986) 1113-1118.

    PubMed  Google Scholar 

  15. Barnes-Seeman, D., Park, S. B., Koehler, A. N. and Schreiber S. L., Expanding the functional group compatibility of small-molecule microarrays: Discovery of novel calmodulin ligands, Angew. Chem. Int. Ed., 115 (2003) 2478-2481.

    Google Scholar 

  16. Hergenrother, P. J., Depew, K. M. and Schreiber, S. L., Smallmolecule microarrays: Covalent attachment and screening of alcoholcontaining small molecules on glass slides, J. Am. Chem. Soc., 2000 (2000) 7849-7850.

  17. Kusnezow, W., Jacob, A., Walijew, A., Diehl, F. and Hoheisel, J. D., Antibody microarrays: An evaluation of production parameters, Proteomics, 3 (2003) 254-264.

    PubMed  Google Scholar 

  18. Bonina, F. P., Arenare, L., Palagiano, F., Saija, A., Nava, F., Trombetta, D. and De Caprariis, P., Synthesis, stability, and pharmacological evaluation of Nipecotic acid prodrugs, J. Pharm. Sci., 88 (1999) 561.

    PubMed  Google Scholar 

  19. Yang, C., Gao, H. and Mitra, A. K., Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of Acyclovir, J. Pharm. Sci., 90 (2001) 617-624.

    PubMed  Google Scholar 

  20. Rötzschke, O., Falk, K., Stevanović, S., Jung, G., Walden, P. and Rammensee, H.-G., Exact prediction of a natural T cell epitope, Eur. J. Immunol., 21 (1991) 2891-2894.

    PubMed  Google Scholar 

  21. Hoff, A., André, T., Schäffer, T. E., Jung, G., Wiesmüller, K.-H. and Brock, R., Lipo-conjugates for the non-covalent generation of microarrays in biochemical and cellular assays, ChemBioChem, 3 (2002) 1183-1191.

    PubMed  Google Scholar 

  22. Fischer, R., Waizenegger, T., Köhler, K. and Brock, R., A quantitatitive validation of fluorophore-labelled cell-permeable peptide conjugates: Fluorophore and cargo dependence of import, Biochim. Biophys. Acta-Biomembranes, 1564 (2002) 365-374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoff, A., André, T., Fischer, R. et al. Chemolabile cellular microarrays for screening small molecules and peptides. Mol Divers 8, 311–320 (2004). https://doi.org/10.1023/B:MODI.0000036241.85469.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000036241.85469.85

Navigation