Molecular Diversity

, Volume 8, Issue 3, pp 209–218 | Cite as

Peptide arrays with designed α-helical structures for characterization of proteins from FRET fingerprint patterns

  • Kenji Usui
  • Mizuki Takahashi
  • Kiyoshi Nokihara
  • Hisakazu Mihara


A practical high-throughput protein detection system is described, based on synthetic peptide arrays consisting of designed α-helical peptides, detected by fluorescence resonance energy transfer (FRET). Initially a model α-helical peptide known to interact with a structured protein, calmodulin, was selected to establish the strategy for high-throughput detection. In comparison to peptides with a single probe, a much higher FRET response has been observed with two fluorescent probes (7-diethylaminocoumarin-3-carboxylic acid and 5(6)-carboxy-fluorescein) at both termini of the synthetic peptides. To establish a reproducible high-throughput detection system, peptides were also immobilized onto a solid surface for detection of the target proteins. A small library of 112 different peptides was constructed, based on a model of the α-helical peptide with systematic replacement of residues carrying specific charges and/or hydrophobicities. The library was used to effectively characterize various proteins, giving their own `protein fingerprint' patterns. The resulting `protein fingerprints' correlate with the recognition properties of the proteins. The present microarray with designed synthetic peptides as the capturing agents is promising for the development of protein detection chips.

FRET α-helix microarray peptide proteinchip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niemeyer, C. M. and Blohm, D., DNA microarrays, Angew. Chem. Int. Ed., 38 (1999) 2865-2869; Angew. Chem., 111 (1999) 3039-3043.Google Scholar
  2. 2.
    DeRisi, J. L., Iyer, V. R. and Brown, P. O., Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278 (1997) 680-686.PubMedGoogle Scholar
  3. 3.
    Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell. Biol., 19 (1999) 1720-1730.PubMedGoogle Scholar
  4. 4.
    Anderson, N. L. and Anderson, N. G., Proteome and proteomics: New technologies, new concepts, and new words, Electrophoresis, 19 (1998) 1853-1861.PubMedGoogle Scholar
  5. 5.
    Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., Mortensen, P., Shevchenko, A., Boucherie, H. and Mann, M., Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels, Proc. Natl. Acad. Sci. USA, 93 (1996) 14440-14445.PubMedGoogle Scholar
  6. 6.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotech., 17 (1999) 994-999.Google Scholar
  7. 7.
    Natsume, T., Nakayama, H. and Isobe, T., BIA-MS-MS: Biomolecular interaction analysis for functional proteomics, Trends Biotech., 19 (Suppl.) (2001) S28–S33.Google Scholar
  8. 8.
    MacBeath, G. and Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination, Science, 289 (2000) 1760–1763.PubMedGoogle Scholar
  9. 9.
    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V. and Mirzabekov, A., Protein microchips: Use for immunoassay and enzymatic reactions, Anal. Biochem., 278 (2000) 123-131.PubMedGoogle Scholar
  10. 10.
    Zhu, H. and Snyder, M., Protein arrays and microarrays, Curr. Opin. Chem. Biol., 5 (2001) 40-45.PubMedGoogle Scholar
  11. 11.
    Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M., Global analysis of protein activities using proteome chips, Science, 293 (2001) 2101-2105.PubMedGoogle Scholar
  12. 12.
    Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vöhringer, C. F. and Joos, T. O., Protein microarray technology, Trends Biotech., 20 (2002) 160-166.Google Scholar
  13. 13.
    Wilson, D. S. and Nock, S., Recent developments in protein microarray technology, Angew. Chem. Int. Ed., 42 (2003) 494-500; Angew. Chem., 115 (2003) 510-517.Google Scholar
  14. 14.
    Mitchell, P., A perspective on protein microarrays, Nat. Biotech., 20 (2002) 225–229.Google Scholar
  15. 15.
    Takahashi, M., Nokihara, K. and Mihara, H., Construction of a protein-detection system using a loop peptide library with a fluorescence label, Chem. Biol., 10 (2003) 53–60.PubMedGoogle Scholar
  16. 16.
    Chan, W. C. and White, P. D., Fmoc solid phase peptide synthesis: A practical approach, Oxford University Press, New York, 2000.Google Scholar
  17. 17.
    Gregorius, K., Mouritsen, S. and Elsner, H. I., Hydrocoating: A new method for coupling biomolecules to solid phases, J. Immunol. Meth., 181 (1995) 65-73.Google Scholar
  18. 18.
    Wahler, D., Badalassi, F., Crotti, P. and Reymond, J. L., Enzyme fingerprints of activity, and stereo-and enantioselectivity from fluorogenic and chromogenic substrate arrays, Chem. Eur. J., 8 (2002) 3211-3228.Google Scholar
  19. 19.
    O'Neil, K. T. and DeGrado, W. F., How calmodulin binds its targets: Sequence independent recognition of amphiphilic a-helices, Trends Biol. Sci., 15 (1990) 59–64.Google Scholar
  20. 20.
    Maulet, Y. and Cox, J. A., Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium, Biochemistry, 22 (1983) 5680-5686.PubMedGoogle Scholar
  21. 21.
    Cox, J. A., Comte, M., Fitton, J. E. and DeGrado, W. F., The interaction of calmodulin with amphiphilic peptides, J. Biol. Chem., 260 (1985) 2527-2534.PubMedGoogle Scholar
  22. 22.
    Greenfield, N. and Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry, 8 (1969) 4108-4116.PubMedGoogle Scholar
  23. 23.
    Kuwabara, T., Nakamura, A., Ueno, A. and Toda, F., Inclusion complexes and guest-induced color changes of pH-indicator-modified β-cyclodextrins.J. Phys. Chem., 98 (1994) 6297-6303.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Kenji Usui
    • 1
  • Mizuki Takahashi
    • 1
  • Kiyoshi Nokihara
    • 2
  • Hisakazu Mihara
    • 1
  1. 1.Department of Bioengineering and the COE21 program, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyMidori-ku, YokohamaJapan
  2. 2.HiPep LaboratoriesKamigyo-ku, KyotoJapan

Personalised recommendations