Skip to main content
Log in

Tools for microwave-assisted parallel syntheses and combinatorial chemistry

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A protocol for transferring conventional reactions to the microwave field explores the effectiveness of parallel syntheses and combination approaches. Applicability to the reaction systems combiCHEM, multiPREP, MMR8 and HPR is defined. Model reactions have been performed in laboratory equipment.Emphasis is placed on similar reaction conditions in the individual vessels and the repeatability of results. Outcomes include esterifications and multi-center reactions exhibiting a great potential for combinatorial chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ugi, I., Perspectives of multicomponent reactions and there libraries, J. Prakt. Chem., 339 (1997) 499–516.

    Google Scholar 

  2. Schlügl, R., Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or ‘the King's New Clothes?’, Angew. Chem. Int. Ed., 37 (1998) 2333–2336.

    Google Scholar 

  3. Lam, K. S., Lebl, M. and Krchnak, V., The ‘One-Bead-One-Compound’ combinatorial library method, Chem. Rev., 97 (1997) 411–448.

    Google Scholar 

  4. An, H. and Cook, P. D., Methodologies for generating solution-phase combinatorial libraries, Chem. Rev., 100 (2000) 331–3340.

    Google Scholar 

  5. Tommasi, R. A., Whaley, L. W. and Marepalli, H. R., Auto-Chem: Automated solution-phase synthesis and purification via HPLC, J. Comb. Chem., 2 (2000) 447–449.

    Google Scholar 

  6. Ohlstein, E. H., Riffolo Jr., R. R. and Elliott, J. D., Drug discovery in the next millennium, Annu. Rev. Pharmacol. Toxicol., 40 (2000) 177–191.

    Google Scholar 

  7. Ding, Sh., Gray, N. S., Wu, X., Ding, Qu. and Schultz, P. G., A combinatorial scaffold approach towards Kinasedirected heterocycle libraries, J. Am. Chem. Soc., 124 (2002) 1594–1596.

    Google Scholar 

  8. Biginelli, P., Derivati aldeidureidici degli eteri acetil-ed ossalacetico, Gazz. Chim. Ital., 23 (1893) 360–416.

    Google Scholar 

  9. Lidström, P., Tierney, J., Wathey, B. and Westmann, J., Microwave assisted organic synthesis – a review, Tetrahedron, 57 (2001) 9225–9283.

    Google Scholar 

  10. Strauss, Ch. R., Invited Review, A combinatorial approach to the development of environmentally benign organic chemical preparations, Aust. J. Chem., 52 (1999) 83–96.

    Google Scholar 

  11. Larhed, M., Moberg, Ch. and Hallberg, A., Microwaveaccelerated homogeneous catalysis in organic chemistry, Acc. Chem. Res., 35 (2002) 717–727.

    Google Scholar 

  12. Romanova, N. N., Kudan, P. V., Gravis, A. G. and Bundel, Yu. G., The use of microwave activation in the chemistry of heterocyclic compounds (review), Chem. Heterocyclic Comp., 36 (2000) 1130–1140.

    Google Scholar 

  13. Larhed, M. and Hallberg, A., Microwave-assisted high-speed chemistry: a new technique in drug discovery, Drug Discovery Today, 5 (2001) 406–416.

    Google Scholar 

  14. Barchin, B. M., Cuadro, A. M. and Alvarez-Builla, J., Microwave-assisted parallel synthesis of a 2-aryl-1Hisoindole-1,3-dione library, Synlett, (2002) 343–345.

  15. Cotterill, I. C., Usyatinsky, A.Y., Arnold, J. M., Clark, D. S., Dordick, J. S., Michels, P. C. and Khmelnitsky, Y. L., Microwave assisted combinatorial chemistry – Synthesis of substituted pyridines, Tetrahedron Lett., 39 (1998) 1117–1120.

    Google Scholar 

  16. Lew, A., Krutzik, P. O., Hart, M. E. and Chamberlain, A. R., Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry, J. Comb. Chem., 4 (2002) 95–105.

    Google Scholar 

  17. Coleman, C. M., MacElroy, J. M. D., Gallagher, J. F. and O'shea, D. F., Microwave parallel library generation: Comparison of a conventional-and microwave-generated substituted 4(5)-sulfanyl-1H-imidazole library, J. Comb. Chem., 4 (2002) 87–93.

    Google Scholar 

  18. Nüchter, M., Müller, U., Ondruschka, B., Tied, A. and Lautenschläger, W., Carrying out chemical reactions in a microwave field, Chem. Ing. Tech., 74 (2002) 910–920.

    Google Scholar 

  19. Nüchter, M. and Ondruschka, B., Organic synthesis with microwaves: there is room for improvement, Nachr. Chem., 51 (2003) 522–526.

    Google Scholar 

  20. Sengutta, U. and Meier, H.-P., Focused Microwave Synthesis, GIT Labor-Fachzeitschrift, (2002) 1038–1043.

  21. Author's team, Organikum, 20th edition, Wiley-VCH, Weinheim – New York, 1999, 519.

    Google Scholar 

  22. Author's team, Organikum, 20th edition, Wiley-VCH, Weinheim – New York, 1999, 442–443.

    Google Scholar 

  23. Kappe, C. O., 100 Years of the Biginelli dihydropyrimidine synthesis, Tetrahedron, 32 (1993) 6937–6963.

    Google Scholar 

  24. Falsone, F. S. and Kappe, C. O., The Biginelli dihydropyrimidone synthesis using polyphosphate esters as a mild and efficient cyclocondensation/dehydration reagent, ARKIVOC, 2 (2001) 1111–1123.

    Google Scholar 

  25. Kappe, C. O., Kumar, D. and Varma, R. S., Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones using a solventless Biginelli condensation protocol, Synthesis, (1999) 1799–1803.

  26. Perreux, L., Loupy, A. and Volatron, F., Solvent-free preparation of amides from acids and primary amines under microwave irradiation, Tetrahedron, 58 (2002) 2155–2162.

    Google Scholar 

  27. Carta, R. and Loddo, L., Effect of microwave radiation on the acetate-catalyzed hydrolysis of phenyl acetate at 25 °C,Ind. Eng. Chem. Res., 41 (2002) 5912–5917.

    Google Scholar 

  28. Hantzsch, A., Über die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak, Liebigs Ann. Chem., 215 (1882) 1–82.

    Google Scholar 

  29. Trotzki, R., Nüchter, M. and Ondruschka, B., Microwave assisted phosgenation – alcoholyses using triphosgene, Green Chemistry, 5 (2003) 285–290.

    Google Scholar 

  30. Author's team, Organikum, 20th edition, Wiley-VCH, Weinheim – New York, 1999, 444–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nüchter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nüchter, M., Ondruschka, B. Tools for microwave-assisted parallel syntheses and combinatorial chemistry. Mol Divers 7, 253–264 (2003). https://doi.org/10.1023/B:MODI.0000006916.69862.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006916.69862.3d

Navigation