Skip to main content
Log in

Temperature dependent photochemical cleavage of 2,5-dimethylphenacyl esters

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The study of the temperature-sensitive photochemical release of a carboxylic acid from 2,5-dimethylphenacyl ester is reported. Quantum yields of the benzoate ester degradation in benzene increased from 0.22 at room temperature to 0.28 at 50 °C whereas a more significant increase (nearly by a factor of 3) was observed in methanol and ethanol, reaching a high reaction efficiency (0.25) typically found in non-polar solvents. The reaction proceeds predominantly via the triplet pathway and the E-photoenol in the whole temperature range in methanol solution. A higher quantum efficiency in heated methanol is explained by enhancing the E-photoenol population. This picture was partially confirmed by the quantum chemical calculations. The 2,5-dimethylphenacyl chromophore is proposed as an efficient photoremovable protecting group for carboxylic acids in solutions under conventional or microwave-assisted heating for applications in organic synthesis, such as the solid-phase synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrison, H., tiBiological Applications of Photochemical Switches, Wiley, New York, 1993.

  2. Wuts, P. G. M. and Green, T. W., tiProtective Groups in Organic Synthesis, Wiley, New York, 1999.

  3. Pelliccioli, A. P. and Wirz, J., Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 1 (2002) 441–458.

    Google Scholar 

  4. Bochet, C. G., Photolabile protecting groups and linkers, J. Chem. Soc.-Perkin Trans. 1 (2002) 125–142.

    Google Scholar 

  5. Backes, B. J. and Ellman, J. A., Solid support linker strategies, Curr. Opin. Chem. Biol., 1 (1997) 86–93.

    Google Scholar 

  6. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D., Light-directed, spatially addressable parallel chemical synthesis, Science, 251 (1991) 767–773.

    Google Scholar 

  7. Gordon, K. and Balasubramanian, S., Solid phase synthesis – designer linkers for combinatorial chemistry: a review, J. Chem. Technol. Biotechnol., 74 (1999) 835–851.

    Google Scholar 

  8. Guillier, F., Orain, D. and Bradley, M., Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry, Chem. Rev., 100 (2000) 2091–2157.

    Google Scholar 

  9. Banerjee, A. and Falvey, D. E., Protecting groups that can be removed through photochemical electron transfer: Mechanistic and product studies on photosensitized release of carboxylates from phenacyl esters, J. Org. Chem., 62 (1997) 6245–6251.

    Google Scholar 

  10. Givens, R. S. and Park, C. H., p-Hydroxyphenacyl ATP: A new phototrigger, Tetrahedron Lett., 37 (1996) 6259–6262.

    Google Scholar 

  11. Givens, R. S., Weber, J. F. W., Conrad, P. G., Orosz, G., Donahue, S. L. and Thayer, S. A., New phototriggers 9: p-hydroxyphenacyl as a C-terminal photoremovable protecting group for oligopeptides, J. Am. Chem. Soc., 122 (2000) 2687–2697.

    Google Scholar 

  12. Klan, P., Zabadal, M. and Heger, D., 2,5-Dimethylphenacyl as a new photoreleasable protecting group for carboxylic acids, Org. Lett., 2 (2000) 1569–1571.

    Google Scholar 

  13. Zabadal, M., Pelliccioli, A. P., Klan, P. and Wirz, J., 2,5-Dimethylphenacyl esters: A photoremovable protecting group for carboxylic acids, J. Phys. Chem. A, 105 (2001) 10329–10333.

    Google Scholar 

  14. Klan, P., Pelliccioli, A. P., Pospisil, T. and Wirz, J., 2,5-Dimethylphenacyl esters: A photoremovable protecting group for phosphates and sulfonic acids, Photochem. Photobiol. Sci., 1 (2002) 920–923.

    Google Scholar 

  15. Pelliccioli, A. P., Klan, P. P., Zabadal, M. and Wirz, J., Photorelease of HCl from o-methylphenacyl chloride proceeds through the Z-xylylenol, J. Am. Chem. Soc., 123 (2001) 7931–7932.

    Google Scholar 

  16. Abramovitch, R. A., Applications of microwave-energy in organic-chemistry – A review, Org. Prep. Proced. Int., 23 (1991) 685–711.

    Google Scholar 

  17. Loupy, A., Petit, A., Hamelin, J., Texier-Boullet, F., Jacquault, P. and Mathe, D., New solvent free organic synthesis using focused microwaves, Synthesis (1998) 1213–1234.

  18. Galema, S. A., Microwave chemistry, Chem. Soc. Rev., 26 (1997) 233–238.

    Google Scholar 

  19. Whittaker, A. G. and Mingos, D. M. P., The application of microwave-heating to chemical syntheses, J. Microw. Power Electromagn. Energy, 29 (1994) 195–219.

    Google Scholar 

  20. Kappe, C. O. and Stadler, A., Microwave-Assisted Combinatorial Chemistry, in A. Loupy (ed.), Microwaves in Organic Synthesis, Wiley-WCH, Weinheim, 2002.

    Google Scholar 

  21. Klan, P. and Cirkva, V., Microwave Photochemistry, in A. Loupy (ed.), tiMicrowaves in Organic Synthesis, Wiley-WCH, Weinheim, 2002.

  22. Literak, J., Klan, P., Heger, D. and Loupy, A., Photochemistry of alkyl aryl ketones on alumina, silica-gel and water ice surfaces, J. Photochem. Photobiol. A-Chem., 154 (2003) 155–159.

    Google Scholar 

  23. Literak, J. and Klan, P., The electrodeless discharge lamp: a prospective tool for photochemistry – Part 2. Scope and limitation, J. Photochem. Photobiol. A-Chem., 137 (2000) 29–35.

    Google Scholar 

  24. Klan, P., Ruzicka, R., Heger, D., Literak, J., Kulhanek, P. and Loupy, A., Temperature-sensitive photochemical aromatic substitution on 4-nitroanisole, Photochem. Photobiol. Sci., 1 (2002) 1012–1016.

    Google Scholar 

  25. Klan, P., Hajek, M. and Cirkva, V., The electrodeless discharge lamp: a prospective tool for photochemistry Part 3. The microwave photochemistry reactor, J. Photochem. Photobiol. A-Chem., 140 (2001) 185–189.

    Google Scholar 

  26. Klan, P., Literak, J. and Relich, S., Molecular photochemical thermometers: investigation of microwave superheating effects by temperature dependent photochemical processes, J. Photochem. Photobiol. A-Chem., 143 (2001) 49–57.

    Google Scholar 

  27. Klan, P., Literak, J. and Hajek, M., The electrodeless discharge lamp: a prospective tool for photochemistry, J. Photochem. Photobiol. A-Chem., 128 (1999) 145–149.

    Google Scholar 

  28. Banerjee, A. and Falvey, D. E., Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone, J. Am. Chem. Soc., 120 (1998) 2965–2966.

    Google Scholar 

  29. Renaud, J. and Scaiano, J. C., Hydrogen vs electron transfer mechanisms in the chain decomposition of phenacyl bromides. Use of isotopic labeling as a mechanistic probe, Can. J. Chem. Rev. Can. Chim., 74 (1996) 1724–1730.

    Google Scholar 

  30. Banerjee, A. and Falvey, D. E., Protecting groups that can be removed through photochemical electron transfer: Mechanistic and product studies on photosensitized release of carboxylates from phenacyl esters, J. Org. Chem., 62 (1997) 6245–6251.

    Google Scholar 

  31. Banerjee, A., Lee, K., Yu, Q., Fang, A. G. and Falvey, D. E., Protecting group release through photoinduced electron transfer: Wavelength control through sensitized irradiation, Tetrahedron Lett., 39 (1998) 4635–4638.

    Google Scholar 

  32. Bochet, C. G., Orthogonal photolysis of protecting groups, Angew. Chem. Int. Edit., 40 (2001) 2071–2073.

    Google Scholar 

  33. Schelhaas, M. and Waldmann, H., Protecting group strategies in organic synthesis, Angew. Chem.-Int. Edit. Engl., 35 (1996) 2056–2083.

    Google Scholar 

  34. Ryba, T. D. and Harran, P. G., Two useful photolabile surfaces for solid-phase synthesis, Org. Lett., 2 (2000) 851–853.

    Google Scholar 

  35. Holmes, C. P., Model studies for new o-nitrobenzyl photolabile linkers: Substituent effects on the rates of photochemical cleavage, J. Org. Chem., 62 (1997) 2370–2380.

    Google Scholar 

  36. Holmes, C. P. and Jones, D. G., Reagents for combinatorial organic-synthesis – Development of a new O-nitrobenzyl photolabile linker for solid-phase synthesis, J.Org. Chem., 60 (1995) 2318–2319.

    Google Scholar 

  37. Bellof, D. and Mutter, M., A new phenacyl-type handle for polymer supported peptide-synthesis, Chimia, 39 (1985) 317–320.

    Google Scholar 

  38. Cano, M., Ladlow, M. and Balasubramanian, S., Practical synthesis of a dithiane-protected 3',5'-dialkoxybenzoin photolabile safety-catch linker for solid-phase organic synthesis, J. Org. Chem., 67 (2002) 129–135.

    Google Scholar 

  39. Hart, R. T. and Tebbe, R. F., Acylation-alkylation studies. I., J. Am. Chem. Soc., 72 (1950) 3286–3287.

    Google Scholar 

  40. Moon, S. and Bohm, H., The reaction of lead tetraacetate with unsymmetrical ketones, J. Org. Chem., 37 (1972) 4338–4340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Klán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Literík, J., Relich, S., Kulhánek, P. et al. Temperature dependent photochemical cleavage of 2,5-dimethylphenacyl esters. Mol Divers 7, 265–271 (2003). https://doi.org/10.1023/B:MODI.0000006862.98763.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006862.98763.dd

Navigation