Skip to main content
Log in

Combining the use of solid‐supported transition metal catalysis with microwave irradiation in solution‐phase parallel library synthesis

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Microwave heating methods have been combined with the use of solid‐supported catalysts to produce small solution‐phase libraries of medicinally‐relevant compounds. Palladium supported on charcoal (Pd/C) has been used to produce libraries of pyrazole compounds for screening in COX II studies via Suzuki cross coupling reactions, while the same catalyst has been used also to produce styryl‐based nAChR compounds using analogous chemistry. Although the reaction substrates are very different (aryl vs. vinyl), this catalyst system provided consistently good and reliable results. The use of a polystyrene‐supported Ru catalyst for ring‐closing metathesis (RCM) reactions was also evaluated to prepare benzolactam structures for evaluation as factor Xa inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuttleworth, S. J., Allin, S. M., Wilson, R. D. and Nasturica, D., Functionalized polymers in organic chemistry, Part 2, Synthesis, (2000) 1035–1074.

  2. Organ, M. G. and Mallik, D., Optimizing Solution Phase Synthesis Using Solid Phase Techniques, Optimizing Solid‐Phase Chemistry, Marcel‐Dekker, New York, 2001, 315–381.

    Google Scholar 

  3. Ley, S. V., Baxendale, I. R., Bream, R. N., Jackson, P. S., Leach, A. G., Longbottom, D. A., Nesi, M., Scott, J. S., Storer, R. I. and Taylor, S. J., Multi‐step organic synthesis using solid‐supported reagents and scavengers: a new paradigm in chemical library generation, J. Chem. Soc., Perkin Trans., 1 (2000) 3815–4195.

    Google Scholar 

  4. Lidström, P., Tierney, J., Whatey, B. and Westman, J., Microwave assisted organic synthesis – a review, Tetrahedron, 57 (2001) 9225–9283.

    Google Scholar 

  5. Larhed, M. and Hallberg, A., Microwave‐assisted highspeed chemistry: a new technique in drug discovery, Drug Discov. Today, 6 (2001) 406–416.

    Google Scholar 

  6. Kappe, C. O., High‐speed combinatorial synthesis utilizing microwave irradiation, Curr. Opin. Chem. Biol., 6 (2002) 314–320.

    Google Scholar 

  7. Bendale, P. M. and Sun, C.‐M., Rapid microwaveassisted liquid‐phase combinatorial synthesis of 2‐(arylamino)benzimidazoles, J. Comb. Chem., 4 (2002) 359–361.

    Google Scholar 

  8. Larhed, M., Moberg, C. and Hallberg, A., Microwaveaccelerated homogeneous catalysis in organic chemistry, Acc. Chem. Res., 35 (2002) 717–727.

    Google Scholar 

  9. Loupy, A., Microwaves in Organic Synthesis, Wiley‐VCH: Weinheim 2002.

    Google Scholar 

  10. Organ, M. G. and Mayer, S., Synthesis of 4‐(5‐iodo‐3‐methylpyrazolyl) phenylsulfonylamide and its elaboration to a COX II inhibitor library by solution‐phase Suzuki coupling using Pd/C as a solid‐supported catalyst, J. Comb. Chem., 5 (2003) 118–124.

    Google Scholar 

  11. Cavallini, G., Mantegazza, G., Massarini, P. and Tommasini, E., Sull'attività ganglioplegica di alcuni derivati alchilaminici dello stilbene e del difenile, Il Farmaco, 6 (1953) 317–331.

    Google Scholar 

  12. Gotti, C., Fornasari, D. and Clementi, F., Human neuronal nicotinic receptors, Prog. Neurobiol., 53 (1997) 199–237.

    Google Scholar 

  13. Gotti, C., Carbonnelle, E., Moretti, M., Zwart, R. and Clementi, F., Drugs selective for nicotinic receptor subtypes: a real possibility or a dream?, Behav. Br. Res., 113 (2000) 183–192.

    Google Scholar 

  14. Maggi, L., Palma, E., Eusebi, F., Moretti, M., Balestra, B., Clementi, F. and Gotti, C., Selective effect of a 4‐oxystilbene derivative on wild and mutant neuronal chick 7 nicotinic receptor, Br. J. Pharmacol., 126 (1999) 285–295.

    Google Scholar 

  15. Gotti, C., Balestra, B., Moretti, M., Rovati, G. E., Maggi, L., Rossoni, G., Berti, F., Villa, L., Pallavicini, M., and Clementi, F., 4‐Oxystilbene compounds are selective ligands for neuronal nicotinic á‐Bungarotoxin receptors, Br. J. Pharmacol., 124 (1998) 1197–1206.

    Google Scholar 

  16. Organ, M. G., Cooper, T. J., Rogers, L. R., Soleymanzadeh, F. and Paul, T., Synthesis of stereodefined polysubstituted olefins. 1. Sequential intermolecular reactions involving selective, stepwise insertion of Pd(0) intoallylic and vinylic halide bonds. The stereoselective synthesis of disubstituted olefins, J. Org. Chem., 65 (2000) 7959–7970.

    Google Scholar 

  17. Torrado, A., Lopez, S., Alvarez, R. and De Lera, A. R., General synthesis of retinoids and arotinoids via palladiumcatalyzed cross‐coupling of boronic acids with electrophiles, Synthesis, 3 (1995) 285–293.

    Google Scholar 

  18. Suzuki, A., Recent advances in the cross‐coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998, J. Organomet. Chem., 576 (1999) 147–168.

    Google Scholar 

  19. Miyaura, N. and Suzuki, A., Palladium‐catalyzed crosscoupling reactions of organoboron compounds, Chem. Rev., 95 (1995) 2457–2483.

    Google Scholar 

  20. Leadbeater, N. E. and Marco, M., Rapid and amenable suzuki coupling reaction in water using microwave and conventional heating, J. Org. Chem., 68 (2003) 888–892.

    Google Scholar 

  21. Gong, Y. and He, W., Direct synthesis of unprotected 4‐aryl phenylalanines via the Suzuki reaction under microwave irradiation, Org. Lett., 4 (2002) 3803–3805.

    Google Scholar 

  22. Blettner, C. G., Konig, W. A., Stenzel, W. and Schotten, T., Microwave‐assisted aqueous Suzuki cross‐coupling reactions, J. Org. Chem., 64 (1999) 3885–3890.

    Google Scholar 

  23. Larhed, M. and Hallberg, A., Microwave‐promoted palladium‐catalyzed coupling reactions, J. Org. Chem., 61 (1996) 9582–9584.

    Google Scholar 

  24. Bumagin, N. A. and Bykov, V. V., Ligandless palladium 227 catalyzed of arylboronic acids and sodium tetraphenylborate with aryl halides in aqueous media, Tetrahedron, 53 (1997) 14437–14450.

    Google Scholar 

  25. Sakurai, H., Tsukuda, T. and Hirao, Toshikazu, Palladium/ C as reusable catalyst for the coupling reaction of halophenol and arylboronic acids in aqueous media, J. Org. Chem., 67 (2002) 2721–2722.

    Google Scholar 

  26. Heidenreich, R. G., Kohler, K., Krauter, J. G. E. and Pietsch, J., Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions, Synlett, 7 (2002) 1118–1122.

    Google Scholar 

  27. Leblond, C. R., Andrews, A. T., Sun, Y. and Sowa, J. R., Activation of arylchlorides for Suzuki cross‐coupling by ligandless heterogeneous palladium, Org. Lett., 3 (2001) 1555–1557.

    Google Scholar 

  28. Organ, M. G., Arvanitis, E. A., Dixon, C. E. and Lavorato, D. J., Solution‐phase synthesis of an aminomethyl‐substituted biaryl library via sequential amine N‐alkylation and Suzuki cross‐coupling, J. Comb. Chem., 3 (2001) 473–476.

    Google Scholar 

  29. Leadbeater, N. E. and Marco, M., Ligand‐free palladium catalysis of the Suzuki reaction in water using microwave heating, Org. Lett., 4 (2002) 2973–2976.

    Google Scholar 

  30. Organ, M. G., Xu, J. and N'Zemba, B. M., A General and enantiospecific strategy for the synthesis of CVS 1778 and its analogs: inhibitors of factor Xa, Tetrahedron Lett., 43 (2002) 8177–8180.

    Google Scholar 

  31. Pinto, D. J. P., Orwat, M. J., Wang, S., Fevig, J. M., Quan, M. L., Amparo, E., Cacciola, J., Rossi, K. A., Alexander, R. S., Smallwood, A. M., Luettgen, J. M., Liang, L., Aungst, B. J., Wright, M. R., Knobb, R. M,, Wong, P. C., Wexler, R. R. and Lam, P. Y. S., Discovery of 1‐[3‐(aminomethyl)phenyl]‐N‐[3‐fluoro‐2'‐(methylsulfonyl)‐[1,1'‐biphenyl]‐4‐yl]‐3‐(trifluoromethyl)‐1H‐pyrazole‐5‐carboxamide (DPC423), a highly potent, selective and orallybioavailable inhibitor of blood coagulation factor Xa, J. Med. Chem., 44 (2001) 566–578.

    Google Scholar 

  32. Sanford, M. S., Ulman, M. and Grubbs, R. H., New insights into the mechanism of ruthenium‐catalyzed olefin metathesis reactions, J. Am. Chem. Soc., 123 (2001) 749–750.

    Google Scholar 

  33. Ahmed, M., Barrett, A. G. M., Braddock, D. C., Cramp, S. M. and Procopiou, P. A., A recyclable ‘boomerang’ polymersupported ruthenium catalyst for olefin metathesis, Tetrahedron Lett., 40 (1999) 8657–8662.

    Google Scholar 

  34. Ahmed, M., Arnauld, T., Barrett, A. G. M., Braddock, D. C. and Procopiou, P. A., Second generation recyclable ‘boomerang’ polymer supported catalysts for olefin metathesis: application of Arduengo carbene complexes, Synlett, (2000) 1007–1009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Organ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Organ, M.G., Mayer, S., Lepifre, F. et al. Combining the use of solid‐supported transition metal catalysis with microwave irradiation in solution‐phase parallel library synthesis. Mol Divers 7, 211–227 (2003). https://doi.org/10.1023/B:MODI.0000006826.91512.83

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006826.91512.83

Navigation