Skip to main content
Log in

Microwave-assisted Mannich-type three-component reactions

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Mannich-type three-component reactions have been performed successfully using microwave heating in conjunction with the use of ionic liquids as heating agents. Good product yields and short reaction times have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews in the area see: (a) Larhed, M., Moberg, C. and Hallberg, A., Microwave-accelerated homogeneous catalysis in organic chemistry, Acc. Chem. Res., 35 (2002) 717–727.

    Google Scholar 

  2. Lidström, P., Tierney, J., Wathey, B. and Westman, J., Microwave assisted organic synthesis – A review, Tetrahedron, 57 (2001) 9225–9283.

    Google Scholar 

  3. Deshayes, S., Liagre, M., Loupy, A., Luche, J–L. and Petit, A., Microwave activation in phase transfer catalysis, Tetrahedron, 55 (1999) 10851–10870.

    Google Scholar 

  4. Strauss, C. R., A combinatorial approach to the development of environmentally benign organic chemical preparations, Aust. J. Chem., 52(1999) 83–96.

    Google Scholar 

  5. For reviews on the concepts see: (a) Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. and Mingos, D. M. P., Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev., 27 (1998) 213–223.

    Google Scholar 

  6. Baghurst, D. M. and Mingos, D. M. P., Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 20 (1991) 1–47.

    Google Scholar 

  7. Loupy, A. (ed.), Microwaves in Organic Synthesis, Wiley VCH, Weinheim, 2002.

    Google Scholar 

  8. Hayes, B. L., Microwave Synthesis, Chemistry at the Speed of Light, CEM publishing, U.S.A., 2002.

    Google Scholar 

  9. For examples see:(a) Westman, J., An efficient combination of microwave dielectric heating and the use of solid-supported triphenylphosphine for Wittig reactions, Org. Lett., 3 (2001) 3745–3747.

    Google Scholar 

  10. Kuhnert, N. and Danks, T. N., Highly diastereoselective synthesis of 1,3-oxazolidines under thermodynamic control using focused microwave irradiation under solvent-free conditions, Green Chem., 3 (2001) 68–70.

    Google Scholar 

  11. Loupy, A. and Regnier, S., Solvent-free microwav eassisted Beckmann rearrangement of benzaldehyde and 2-hydroxyacetophenone oximes, Tetrahedron Lett., 40 (1999) 6221–6224.

    Google Scholar 

  12. See for example: Martín-Aranda, R. M., Vicente-Rodríguez, M. A., López-Pestana, J. M., López-Peinado, A. J., Jerez, A., López-González J. de D. and Banares-Munoz, M. A., Application of basic clays in microwave activated Michael additions: Preparation of N-substituted imidazoles, J. Mol. Cat. A, 124 (1997) 115–121.

    Google Scholar 

  13. Ley, S. V., Leach, A. G. and Storer, R. I., A polymer-supported thionating reagent, J. Chem. Soc., Perkin Trans. 1, (2001) 358–361.

    Google Scholar 

  14. Leadbeater, N. E. and Torenius, H. M., A study of the ionic liquid mediated microwave heating of organic solvents, J.Org. Chem., 67 (2002) 3145–3148.

    Google Scholar 

  15. For reviews see:(a) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99 (1999) 2071–2083.

    Google Scholar 

  16. Wasserscheid, P. and Keim, W. Ionic liquids – New ‘solutions’ for transition metal catalysis, Angew. Chem. Int. Ed., 39 (2000) 3772–3789.

    Google Scholar 

  17. Olivier-Bourbigou, H. and Magna, L., Ionic liquids: perspectives for organic and catalytic reactions, J. Mol. Catal. A, 182–183 (2002) 419-4-37.

    Google Scholar 

  18. Ren, R. X. and Wu, J. X., Mild conversion of alcohols to alkyl halides using halide-based ionic liquids at room temperature, Org. Lett., 3 (2001) 3727–3728.

    Google Scholar 

  19. Leadbeater, N. E. and Torenius, H. M., Ionic liquids as reagents and solvents in conjunction with microwave heating: rapid synthesis of alkyl halides from alcohols and nitriles from aryl halides, Tetrahedron, 59 (2003) 2253–2258.

    Google Scholar 

  20. For a review in the area see: Weber, L., The application of multi-component reactions in drug discovery, Curr. Med. Chem., 9 (2002) 2085–2093.

    Google Scholar 

  21. For a review on the application of microwave heating to combinatorial synthesis see: Kappe, C. O. High-speed combinatorial synthesis utilizing microwave irradiation, Curr. Opin. Chem. Biol., 6 (2002) 314–320.

    Google Scholar 

  22. See:(a) Kappe, C. O., Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res., 33 (2000) 879–888.

    Google Scholar 

  23. Stadler, A. and Kappe, C. O., Automated library generation using sequential microwave-assisted chemistry. Application towards the Biginelli multicomponent condensation, J. Comb. Chem., 3 (2001) 624–630.

    Google Scholar 

  24. Dyatkin, A. B. and Rivero, R. A., The solid phase synthesis of complex propargylamines using the combination of Sonogashira and Mannich reactions, Tetrahedron Lett., 39 (1998) 3647–3650.

    Google Scholar 

  25. McNally, J. J., Youngman, M. A. and Dax, S. L., Mannich reactions of a resin-bound terminal alkyne, Tetrahedron Lett., 39 (1998) 967–970.

    Google Scholar 

  26. Suarez, P. A. Z., Dullius, J. E. L., Einloft, S., De Souza, R. F. and Dupont, J., The use of new ionic liquids in twophase catalytic hydrogenation reaction by rhodium complexes, Polyhedron, 15 (1996) 1217–1219.

    Google Scholar 

  27. Yanes, E. G., Gratz, S. R., Baldwin, M. J., Robinson, S. E. and Stalcup, A. M., Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids, Anal. Chem., 73 (2001) 3838–3844.

    Google Scholar 

  28. For a review see: Perreux, L. and Loupy, A., A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron, 57 (2001) 9199–9223.

    Google Scholar 

  29. Obrecht, D. and Villagordo, J. M. (eds), Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound 144 Libraries, Tetrahedron Organic Chemistry Series Volume 17, 1998, Pergamon, London.

  30. Ley, S. V., Baxendale, I. R., Bream, R. N., Jackson, P. S., Leach, A. G., Longbottom, D. A., Nesi, M., Scott, J. S., Storer, R. I. and Taylor, S. J., Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation, J. Chem. Soc., Perkin Trans. 1 (2000) 3815–4195.

  31. Ogawa, A., Takami, N., Nanke, T., Ohya, S. and Hirao, T., A novel C-H insertion via deoxygenation of amides by and Sm/SmI 2 mixed system, Tetrahedron, 53 (1997) 12985–12902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Leadbeater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leadbeater, N.E., Torenius, H.M. & Tye, H. Microwave-assisted Mannich-type three-component reactions. Mol Divers 7, 135–144 (2003). https://doi.org/10.1023/B:MODI.0000006822.51884.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006822.51884.e6

Navigation