Skip to main content
Log in

Efficient large scale microwave assisted Mannich reactions using substituted acetophenones

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of substituted acetophenones, paraformaldehyde, and symmetrical dialkylamines were used in microwave enhanced Mannich reactions. Appropriate reaction conditions in terms of choice of solvent, reaction temperature, and reaction time were studied to allow a fast and reproducible production of Mannich bases. Both small (2 mmol) and large scale reactions (40 mmol) were performed successfully, providing a series of substituted Mannich bases in moderate to high yields and high purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mannich, C. and Abdullah, S. M., The bases formed from acetophenone, formaldehyde and ammonium chloride, Ber. 68 (1935) 113–120.

    Google Scholar 

  2. Arend, M., Westermann, E. and Risch, N., What does Carl Mannich have to do with frogs?, Angew. Chem. Int. Ed., 37 (1998) 1044–1070.

    Google Scholar 

  3. These reactions are often run in HCl at high temperatures; see e.g. Bryant, J. A., Helgeson, R. C., Knobler, C. B., de-Grandpre, M. P. and Cram, D. J., Host-Guest complexation. 53. Functional group preorganized in hemispherands for binding alkali metal and ammonium cations, J. Org. Chem., 55 (1990) 4622–4634.

    Google Scholar 

  4. Lidström, P., Thierney, J., Whatey, B. and Westman, J., Microwave assisted organic synthesis – A review, Tetrahedron, 57 (2001) 9225–9283.

    Google Scholar 

  5. Gadhwal, S., Baruah, M., Prajapati, D. and Sandhu, J. S., Microwave assisted regioselective synthesis of β-aminoketones via the Mannich reaction, Synlett, 3 (2000) 341–342.

    Google Scholar 

  6. Microwave assisted aminoalkylation reactions have also been reported. For reactions of terminal alkynes on alumina, see: Sharifi, A., Farhangain, H., Mohsenzadeh, F. and Naimi-Jamal, M. R., Microwave assisted Mannich reaction on terminal alkynes on alumina, Monatsh. Chem., 133 (2002) 199–204. For microwave assisted aminoalkylations of phenols and indoles, see: Sharifi, A., Mirzaei, M. and Naimi-Jamal, M. R., Solvent free aminoalkylation of phenols and indoles assisted by microwave irradiation, Monatsh. Chem., 132 (2001) 875–880. For microwave enhanced condensations on CuI-doped alumina, see Kabalka, G. W., Wang, L. and Pagni, R. M., A microwave-enhanced, solventless Mannich condensation on CuI-doped alumina, Synlett, 5 (2001) 676–678. For microwave assisted aminoalkylation of electron-rich compounds, see: Mojtahedi, M.M., Sharifi, A.,Mohsenzadeh, F. and Saidi, M. R., Microwave-assisted aminomethylation of electronrich compounds under solvent-free condition, Synth. Commun., 30 (2000) 69–72.

    Google Scholar 

  7. Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J. and Mingos, D. M. P., Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev., 27 (1998) 213–221.

    Google Scholar 

  8. Burpitt, B. E., Crawford, L. P., Davies, B. J., Mistry, J., Mitchell, M. B. and Pancholli, K. D., 6-(Substituted phenyl)-5-methyl-4,5-dihydro-pyridazin-3(2H)-ones of medicinal interest. The synthesis of SK&F 94836 and SK&F 95654, J. Heterocycl. Chem., 25 (1988) 1689–1695.

    Google Scholar 

  9. Girreser, U., Heber, D. and Schuett, M., A facile one-pot synthesis of 1-aryl-2-(dimethylaminomethyl)prop-2-en-1-ones from aryl methyl ketones, Synthesis, 5 (1998) 715–717.

    Google Scholar 

  10. Handa, S., Jones, K. and Newton, C. G., Synthetic studies on morphine-based analgesics. Intramolecular Diels-Alder approach to 4a-aryldecahydroisoquinolines, J. Chem. Soc., Perkin Trans. 1, 12 (1995) 1623–1633.

    Google Scholar 

  11. Clark, J. H. and Cork, D. G., Synthesis of 1,4-diketones by fluoride-catalysed Michel addition and supported permanganate oxidation, J. Chem. Soc., Chem. Commun., 11 (1982) 635–636.

    Google Scholar 

  12. Meindl, W., Laske, R. and Boem, M., Tumor-inhibiting β-amino ketones. Arch. Pharm. 320 (8), (1987), 730–737. Coates, W. J., Prain, H. D., Reeves, M. L. and Warrington, B. H., 1,4-Bis(3-oxo-2,3-dihydropyridazin-6-yl)benzene analogues: Potent phosphodiesterase inhibitors and inodilators, J. Med. Chem., 33 (1990) 1735–1741.

    Google Scholar 

  13. Lindström, U. M., Olofsson, B. and Somfai, P., Microwave-assisted aminolysis of vinylepoxides, Tetrahedron Lett., 40 (1999) 9273–9276

    Google Scholar 

  14. Microwave-Enhanced Chemistry, Kingston, H. M. and Haswell, S. J. (eds), American Chemical Society, Washington, DC, 1997.

    Google Scholar 

  15. Microwaves in Organic Synthesis, Loupy, A. (ed.), Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  16. Microwave-Assisted Organic Synthesis, Lidström, P. and Tierney, J. P. (eds), Blackwell Publishing, Oxford, 2004.

    Google Scholar 

  17. For multimode batch reactors, see: Raner, K. D., Strauss, C. R., Trainor, R. W. and Thorn, J. S., A new microwave reactor for batchwise organic synthesis, J. Org. Chem., 60 (1995) 2456–2460. For monomode batch reactors, see

    Google Scholar 

  18. Perio, B., Dozias, M.-J. and Hamelin, J., Ecofriendly fast batch synthesis of dioxolanes, dithiolanes, and oxathiolanes without solvent under microwave irradiation, Org. Process Res. Dev., 2 (1998) 428–430.

    Google Scholar 

  19. Cléophax, J., Liagre, M., Loupy, A. and Petit, A., Application of focused microwaves to the scale-up of solvent-free organic reactions, Org. Process Res. Dev., 4 (2000) 498–504. For continuous flow reactors, see

    Google Scholar 

  20. Cablewski, T., Faux, A. F. and Strauss, C. R., Development and application of a continuous microwave reactor for organic synthesis, J. Org. Chem., 59 (1994) 3408–3412.

    Google Scholar 

  21. Kazba, K., Chapados, B. R., Gestwicki, J. E. and McGrath, J. L., Microwave-induced esterification using heterogeneous acid catalyst in a low dielectric constant medium, J. Org. Chem., 65 (2000) 1210–1214.

    Google Scholar 

  22. Khadilkar, B. M. and Madyar, V. R., Scaling up of dihydropyridine ester synthesis by using aqueous hydrotrope solutions in a continuous microwave reactor, Org. Process Res. Dev., 5 (2001) 452–455.

    Google Scholar 

  23. Esveld, E., Chemat, F. and Van Haveren, J., Pilot scale continuous microwave dry-media reactor – Part I: Design and modeling, Chem. Eng. Technol., 23 (2000) 279–283.

    Google Scholar 

  24. Esveld, E., Chemat, F. and Van Haveren, J., Pilot scale continuous microwave dry-media reactor – Part II: Application to waxy esters production, Chem. Eng. Technol., 23 (2000) 429–435.

    Google Scholar 

  25. Hayes, B. L., Collins, M. J., Collins Jr., J. M., Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, 23–27 March 2003, ORGN-053.

  26. Shieh, W.-C., Dell, S. and Repic, O., Large scale microwave-accelerated esterification of carboxylic acids with dimethyl carbonate, Tetrahedron Lett., 43 (2002) 5607–5609.

    Google Scholar 

  27. Hoegberg, T., Ulff, B. and Renyi, A. L., Synthesis of pyridylallylamines related to zimelidine and their inhibition of neuronal monoamine uptake, J. Med. Chem., 24 (1981) 1499–1507.

    Google Scholar 

  28. Carter, R. H., Garson, M. J., Hill, R. A., Staunton, J. and Sunter, D. C., The synthesis of indan-1-ones and isocoumarines, J. Chem. Soc., Perkin Trans. 1, (1981) 471–479.

    Google Scholar 

  29. Huang, Y. and Hall, I. H., Hypolipidemic effects of α-, β-, and γ-alkylaminophenone analogs in rodents, Eur. J. Med. Chem., 31 (1996) 281–290.

    Google Scholar 

  30. Wang, M. D. and Alper, H., Regioselective synthesis of piperidones by metal-catalysed ring expansion-carbonylation reactions. Remarkable cobalt and/or ruthenium carbonyl catalyzed rearrangement and cyclization reactions, J. Am. Chem. Soc., 114 (1992) 7018–7024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Luthman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, F., Pilotti, Å. & Luthman, K. Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol Divers 7, 145–152 (2003). https://doi.org/10.1023/B:MODI.0000006809.48284.ed

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006809.48284.ed

Navigation