Skip to main content
Log in

Artificial neural networks: Non-linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase inhibitors

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Structure-anti HIV activity relationships were established for a sample of 801-[2-hydroxyethoxy-methyl]-6-(phenylthio)thymine(HEPT) using a three-layer neural network (NN). Eight structural descriptors and physicochemical variables were used to characterize the HEPT derivatives under study. The network's architecture and parameters were optimized in order to obtain good results. All the NN architectures were able to establish a satisfactory relationship between the molecular descriptors and the anti-HIV activity. NN proved to give better results than other models in the literature. NN have been shown to be particularly successful in their ability to identify non-linear relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunne, A. L., Siregar, H., Mills, J. and Crowe, S. M, HIV replication in chronically infected macrophages is not inhibited by the Tat inhibitors Ro-5-3335 and Ro-24-7429, J. Leukocyte Biology, 56 (1994) 369–373.

    CAS  Google Scholar 

  2. Rosenberg, Y. J., Anderson, A. O. and Pabst, R., Decline in blood CD4/CD8 ratios during HIV infections: viral killing or altered lymphocyte trafficking, Immunolo. Today, 19 (1998) 10–17.

    Article  CAS  Google Scholar 

  3. Garg, R., Gupta, S. P., Gao, H., Babu, M. S., Debnath, A. K. and Hansch, C, Comparative quantitative structure-activity relationship studies on anti-HIV drugs, Chem. Rev., 99 (1999) 3525–3601.

    Article  CAS  Google Scholar 

  4. Hannongbua, S., Nivesanond, K., Lawtrakul, L., Pungpo, P. and Wolschann, P, 3-D-quantitative structure-activity relationships of HEPT derivatives as HIV-1 reverse transcriptase inhibitors based on ab initio calculations, J. Inf. Comp. Sci., 41 (2001) 848–855.

    Article  CAS  Google Scholar 

  5. Manallack, D. T. and Livingston, D. J., Neural network in drug discovery: have they lived up their promise?, Eur. J. Med. Chem., 34 (1999) 195–208.

    Article  CAS  Google Scholar 

  6. Hatrik, S. and Zahradnik, P., Neural network approach to the prediction of the toxicity of benzothiazolium salts from molecular structure, J. Chem. Comput. Sci., 36 (1996) 992–995.

    Article  CAS  Google Scholar 

  7. So, S. and Karplus, M., Three-dimentional quantitative structure-activity relationships from molecular similarity matrixes and genetic neural network. 1. Method and validation, J. Med. Chem., 40 (1997) 4360–4359.

    Article  CAS  Google Scholar 

  8. Elkhou, K., Afifi, A., Kabbaj, M., Villemin, D. and Cherqaoui, D., QSAR analysis of estrogen receptor ligands using neural networks, ACH Models in Chemistry, 137(5–6) (2000) 633–642.

    CAS  Google Scholar 

  9. Mghazli, S., Jaouad, A., Mansour, M., Villemin, D. and Cherqaoui, D., Neural networks studies: quantitative structure-activity relationships of antifungal 1-[2-(substituted phenyl)allyl]imidazoles and related compounds, Chemosphere, 43 (2001) 385–390.

    Article  CAS  Google Scholar 

  10. Zakarya, D., Cherqaoui, D., Esseffar, M., Villemin, D. and Cense, J. M., Application of neural networks to structure-sandalwood odour relationships, J. Phys. Org. Chem., 10 (1997) 612–622.

    Article  CAS  Google Scholar 

  11. Cherqaoui, D., Esseffar, M., Villemin, D., Cense, J. M., Chastrette, M. and Zakarya, D., Structure-musk Odour relationship studies of tetralin and indan compounds using neural networks, New J. Chem., (1998) 839–843.

  12. Bodour, N., Harget, A. and Huang, M. J., Neural network studies. 1. Estimation of aqueous solubility of organic compounds, J. Am. Chem. Soc., 113 (1991) 9480–9484.

    Article  Google Scholar 

  13. Cherqaoui, D., Villemin, D. and Kvasnicka, V., Application of neural network approach for prediction of some thermochemical properties of alkanes, Chem. and Intell. Labor. Sys., 24 (1994) 117–128.

    Article  CAS  Google Scholar 

  14. Cense, J.-M., Diawara, B., Legendre, J. J. and Roullet, G., Neural networks prediction of partition coefficients, Chem. and Intell. Labor. Sys., 23 (1994) 301–308.

    Article  CAS  Google Scholar 

  15. Simon, V., Gasteiger, J. and Zupan, J., A combined application of two different neural network types for the prediction of chemical reactivity, J. Am. Chem. Soc., 115 (1993) 9148–9159.

    Article  CAS  Google Scholar 

  16. Zakarya, D., Farhaoui, L. and Fkih-Tetouan, S., Structure-enantioselectivity relationships using neural networks for the reduction of carbonyl compounds with Backer's yeast, Tetrahedron Lett., 35 (1994) 4985–622.

    Article  CAS  Google Scholar 

  17. Aires-de-Sousa, J., Hemmer, M. C. and Gasteiger, J., Prediction of 1HNMR chemical shifts using neural networks, Anal. Chem., 74 (2001) 80–90.

    Article  CAS  Google Scholar 

  18. Munk, M. E., Madison, M. S. and Robb, E. W., Neural network models to infrared spectrum interpretation, Mikrochim Acta [Wien], 2 (1991) 505–514.

    Article  CAS  Google Scholar 

  19. Miyashita, Y., Yoshida, H., Yaegashi, O., Kimura, T., Nishiyama, H. and Sasaki, S., Non-linear modelling of 13 C NMR chemical shift data using artificial neural networks and partial least squares method, J. Mol. Struct. (Theochem), 311 (1994) 241–245.

    Article  Google Scholar 

  20. Curry, B. and Rumelhart, D. E, MS net: A neural network that classifies mass spectra, Tetrahedron Comput. Methodol., 3 (1990) 213–237.

    Article  CAS  Google Scholar 

  21. Holley, L. H. and Karplus, M., Protein secondary structure prediction with a neural network, Proc. Natl. Acad. Sci. U.S.A., 86 (1989) 152–156.

    Article  CAS  Google Scholar 

  22. Jalali-Heravi, M. and Parastar, F., Use of artificial neural network in a QSAR study of anti-HIV activity for a large group of HEPT derivatives, J. Chem. Inf. Comput. Sci., 40 (2000) 147–154.

    Article  CAS  Google Scholar 

  23. Bazoui, H., Zahouily, M., Boulaajaj, S., Sebti, S. and Zakarya, D., QSAR for anti-HIV activity of HEPT derivatives, SAR QSAR Environ. Res., 13(6) (2002), 567–577.

    Article  CAS  Google Scholar 

  24. Luco, J. and Ferretti, F., QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives, J. Chem. Comput. Sci., 37 (1997) 392–401.

    Article  CAS  Google Scholar 

  25. Zupan, J. and Gasteiger, J., Neural Networks for Chemists. An Introduction, VCH Publishers, Weinheim, (1993).

    Google Scholar 

  26. Cherqaoui, D. and Villemin, D., Use of a neural network to determine boiling point of alkanes, J. Chem. Soc. Faraday Trans., 90 (1994) 97–102.

    Article  CAS  Google Scholar 

  27. Freeman, J. A. and Skapura, D. M., Neural Networks Algorithms, Applications, and Programming Techniques, Addition Wesley Publishing Company, Reading, (1991).

    Google Scholar 

  28. So, S. and Richards, W. G., Application of neural networks: quantitative structure-activity relationships of the derivatives of 2, 4 diamino (substituted-benzyl) pyrimidines as DHFR inhibitors, J. Med. Chem., 35 (1992) 3201–3207.

    Article  CAS  Google Scholar 

  29. Andrea, T. A. and Kalayeh, H., Application of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors, J. Med. Chem., 34 (1991) 2824–2836.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Cherqaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douali, L., Villemin, D., Zyad, A. et al. Artificial neural networks: Non-linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase inhibitors. Mol Divers 8, 1–8 (2004). https://doi.org/10.1023/B:MODI.0000006753.11500.37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006753.11500.37

Navigation