Skip to main content
Log in

In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values

Molecular Diversity Aims and scope Submit manuscript

Abstract

We have investigated whether three important ADME (absorption, distribution, metabolism, excretion) related properties (aqueous solubility, human plasma protein binding, and human volume of distribution at steady-state) can be predicted from chemical structure alone if only the predicted predominant ionisation state and lipophilicity (calculated logP [P = octanol-water partition coefficient]) are considered. A simple, fast method for the in silico prediction of aqueous solubility of predominantly uncharged compounds has been developed, while some potential is shown for the prediction of predominantly charged or zwitterionic compounds. Ten other known in silico prediction methods for aqueous solubility have also been evaluated. It has furthermore been demonstratedthat the molecular weight (MW) profile of training sets for the development of aqueous solubility prediction methods can influence their predictive performance with regard to test sets of either matching or diverging profiles. The same property descriptors which have been found most relevant for the prediction of aqueous solubility have also proved useful for the prediction of human plasma protein binding and human volume of distribution at steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hansch, C., Quinlan, J. E. and Lawrence, G. L., The Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids, J. Org. Chem., 33 (1968) 347–350.

    Google Scholar 

  2. Suzuki, T., Development of an automatic estimation system for both the partition coefficient and aqueous solubility, J. Comp.-Aid. Mol. Design, 5 (1991) 149–166.

    Google Scholar 

  3. Meylan, W. M., Howard, P. H. and Boethling, R. S., Improved method for estimating water solubility from octanol/water partition coefficient, Environ. Toxicol. Chem., 15 (1996) 100–106.

    Google Scholar 

  4. Morris, J. J. and Bruneau, P. P., Prediction of physicochemical properties, Meth. Princ. Med. Chem., 10 (2000) 33–56.

    Google Scholar 

  5. Meylan, W. M. and Howard, P. H., Estimating log P with atom/fragments and water solubility with log P, Persp. Drug Disc. Design, 19 (2000) 67–84.

    Google Scholar 

  6. Jorgensen, W. L. and Duffy, E. M., Prediction of drug solubility from Monte Carlo simulations, Bioorg. Med. Chem. Lett., 10 (2000) 1155–1158.

    Google Scholar 

  7. McFarland, J. W., Estimating the water solubilities of crystalline compounds from their chemical structures alone, J.Chem. Inf. Comput. Sci., 41 (2001) 1355–1359.

    Google Scholar 

  8. Jain, N. and Yalkowsky, S. H., Estimation of the aqueous solubility 1: Application to organic nonelectrolytes, J. Pharm. Sci., 90 (2001) 234–252.

    Google Scholar 

  9. Liu, R. and So, S. S., Development of quantitative structureproperty relationship models for early ADME evaluation in drug discovery. 1. Aqueous Solubility, J. Chem. Inf. Comput. Sci., 41 (2001) 1633–1639.

    Google Scholar 

  10. Livingstone, D. J., Ford, M. G., Huuskonen, J. J. and Salt, D. W., Simultaneous prediction of aqueous solubility and octanol/water partition coefficient based on descriptors derived from molecular structure, J. Comp.-Aid. Mol. Design, 15 (2001) 741–752.

    Google Scholar 

  11. Klopman, G. and Zhu, H., Estimation of the aqueous solubility of organic molecules by the group contribution approach, J. Chem. Inf. Comput. Sci., 41 (2001) 439–445.

    Google Scholar 

  12. Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A. and Giralt, F., A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 1177–1207.

    Google Scholar 

  13. McElroy, N. R. and Jurs, P. C., Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure, J. Chem. Inf. Comput. Sci., 41 (2001) 1237–1247.

    Google Scholar 

  14. Ran, Y. and Yalkowsky, S. H., Prediction of drug solubility by the general solubility equation (GSE), J. Chem. Inf. Comput. Sci., 41 (2001) 354–357.

    Google Scholar 

  15. Ran, Y., Ran, N. and Yalkowsky, S. H., Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE), J. Chem. Inf. Comput. Sci., 41 (2001) 1208–1217.

    Google Scholar 

  16. Peterson, D. L. and Yalkowsky, S. H., Comparison of two methods for predicting aqueous solubility, J. Chem. Inf. Comput. Sci., 41 (2001) 1531–1534.

    Google Scholar 

  17. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Del. Rev., 46 (2001) 3–26.

    Google Scholar 

  18. Huuskonen, J., Estimation of aqueous solubility in drug design, Comb. Chem. High Throughput Scr., 4 (2001) 311–316.

    Google Scholar 

  19. Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Internet software for calculation of lipophilicity and aqueous solubility of chemical compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 246–252.

    Google Scholar 

  20. Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Estimation of aqueous solubility of chemical compounds using E-state indices, J. Chem. Inf. Comput. Sci., 41 (2001) 1488–1493.

    Google Scholar 

  21. Tetko, I. V. and Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci., 42 (2002) 1136–1145.

    Google Scholar 

  22. Jorgensen, W. L. and Duffy, E. M., Prediction of drug solubility from structure, Adv. Drug Del. Rev., 54 (2002) 355–366.

    Google Scholar 

  23. Dearden, J. C., Netzeva, T. I. and Bibby, R., Comparison of a number of commercial software programs for the prediction of aqueous solubility, J. Pharm. Pharmacol., 54(Suppl) (2002) S-66.

    Google Scholar 

  24. Dearden, J. C., Netzeva, T. I. and Bibby, R., A comparison of commercially available software for the prediction of aqueous solubility, Poster presentation, Euro-QSAR 2002, Bournemouth, 8–13 Sep. 2002.

  25. Stahura, F. L., Godden, J. W. and Bajorath, J., Differential Shannon entropy analysis identifies molecular property descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 550–558.

    Google Scholar 

  26. Raevsky, O. A., Trepalin, S. V., Trepalina, H. P., Gerasimenko, V. A. and Raevskaja, O. E., Slipper-2001 – Software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 540–549.

    Google Scholar 

  27. Engkvist, O. and Wrede, P., High-throughput, in silico prediction of aqueous solubility based on one-and two-dimensional descriptors, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 1247–1249.

    Google Scholar 

  28. Wanchana, S., Yamashita, F. and Hashida, M., Quantitative structure/property relationship analysis on aqueous solubility using genetic algorithm-combined partial least squares method, Pharmazie, 57 (2002) 127–129.

    Google Scholar 

  29. Bergstrom, C. A. S., Norinder, U., Luthman, K. and Artursson, P., Experimental and computational screening models for prediction of aqueous drug solubility, Pharm. Res., 19 (2002) 182–188.

    Google Scholar 

  30. Klamt, A., Eckert, F. Hornig, M., Beck, M.E. and Burger, T., Prediction of aqueous solubility of drugs and pesticides with COSMO-RS, J. Comput. Chem., 23 (2002) 275–281.

    Google Scholar 

  31. Comer, J. and Tam, K., Lipophilicity Profiles: Theory and Measurement, in B. Testa, H. van de Waterbeemd, G. Folkers and R. Guy (eds), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta, Zürich, 2001, pp. 275–304.

    Google Scholar 

  32. Lobell, M., Molnár, L. and Keserü G. M., Recent advances in the prediction of blood-brain partitioning from molecular structure, J. Pharm. Sci., 92 (2003) 360–379.

    Google Scholar 

  33. Ghose, A. K. and Crippen, G. M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships 1. Partition coefficients as a measure of hydrophobicity, J. Comp. Chem., 7 (1986) 565–577.

    Google Scholar 

  34. Ghose, A. K. and Crippen, G. M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships III: Modelling hydrophobic interactions, J. Comp. Chem., 9 (1988) 80–90.

    Google Scholar 

  35. Viswanadhan, V. N., Ghose, A. K., Revankar, G. R. and Robins, R. K., Atomic physicochemical parameters for threedimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci., 29 (1989) 163–172.

    Google Scholar 

  36. Ghose, A. K., Viswanadhan, V. N. and Wendoloski, J. J., Prediction of hydrophobic (liphophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. A., 102 (1998) 3762–3772.

    Google Scholar 

  37. Chou, J. T. and Jurs, P. C., Computer-assisted computation of partition coefficients from molecular structures using fragment constants, J. Chem. Inf. Comput. Sci., 19 (1979) 172–178.

    Google Scholar 

  38. Leo, A. J. and Hoekman, D., Calculating logP (oct) with no missing fragments; the problem of estimating new interaction parameters, Persp. Drug Disc. Design, 18 (2000) 19–38.

    Google Scholar 

  39. Petrauskas, A. A. and Kolovanov, E. A., ACD/Log P method description, Persp. Drug Disc. Design, 19 (2000) 99–116.

    Google Scholar 

  40. Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Internet software for calculation of lipophilicity and aqueous solubility of chemical compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 246–252.

    Google Scholar 

  41. Tetko, I. V. and Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci., 42 (2002) 1136–1145.

    Google Scholar 

  42. Meylan, W. M. and Howard, P. H., Atom/fragment contribution method for estimating octanol-water partition coeffi-cients, J. Pharm. Sci., 84 (1995) 83–92.

    Google Scholar 

  43. Navia, M. A. and Chaturvedi, P. R., Design principles for orally bioavailable drugs, Drug Disc. Today, 1 (1996) 179–189.

    Google Scholar 

  44. Ishizaki, J., Yokogawa, K., Nakashima, E. and Ichimura, F., Prediction of changes in the clinical pharmacokinectics of basic drugs on the basis of Octanol-Water partition coefficients, J. Pharm. Pharmacol., 49 (1997) 762–767.

    Google Scholar 

  45. Tucker, T. J., Lumma, W. C., Lewis, S. D., Gardell, S. J., Lucas, B. J., Baskin, E. P., Woltmann, R., Lynch, J. J., Lyle, E. A., Appleby, S. D., Chen, I. W., Dancheck, K. B. and Vacca, J. P., Potent noncovalent thrombin inhibitors that utilize the unique amino acid D-Dicyclohexylalanine in the P3 position. Implications on oral bioavailability and antithrombotic efficacy, J. Med. Chem., 40 (1997) 1565–1569.

    Google Scholar 

  46. Saiakhov, R. D., Stefan, L. R. and Klopman, G., Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs, Persp. Drug Disc. Design, 19 (2000) 133–155.

    Google Scholar 

  47. Mao, H., Craig, P. J. R., Bell, R., Borre, T. and Fesik, S. W., Rational design of diflunisal analogues with reduced affinity for human serum albumin, J. Am. Chem. Soc., 123 (2001) 10429–10435.

    Google Scholar 

  48. Lombardo, F., Obach, R. S., Shalaeva, M. Y. and Gao, F., Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data, J. Med. Chem., 45 (2002) 2867–2876.

    Google Scholar 

  49. Benet, L. Z., Øie, S. and Schwartz, J. B., Design and optimization of dosage regimens; Pharmacokinetic data, in L. S. Goodman, L.E. Limbird and A. G. Gilman (eds), Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 9th Ed., 1996, pp. 1707–1792.

    Google Scholar 

  50. Olson, R. E. and Christ, D. D., Plasma protein binding of drugs, Ann. Rep. Med. Chem., 31 (1996) 327–336.

    Google Scholar 

  51. Riley, R. J., Martin, I. J. and Cooper, A. E., The influence of DMPK as an integrated partner in modern drug discovery, Curr. Drug Metab., 3 (2002) 527–550.

    Google Scholar 

  52. Obach, R. S., Baxter, J. G., Liston, T. E., Silber, B. M., Jones, B. C., MacIntyre, F., Rance, D. J. and Wastall, P., The prediction if human pharmacokinetic parameters from preclinical and in vitro metabolism data, J. Pharmacol. Exp. Ther., 283 (1997) 46–58.

    Google Scholar 

  53. Poulin, P. and Theil, F. P., Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution, J. Pharm. Sci., 91 (2002) 129–156.

    Google Scholar 

  54. Davies, B. and Morris, T., Physiological parameters in laboratory animals and humans, Pharm. Res., 10 (1993) 1093–1095.

    Google Scholar 

  55. van der Waterbeemd, H., Smith, D. A. and Jones, B. C., Lipophilicity in PK design: methyl, ethyl, futile, J. Comp. Mol. Design, 15 (2001) 273–286.

    Google Scholar 

  56. Davis, A. M. and Riley, R., The impact of physical organic chemistry on the control of drug-like properties, Royal Society of Chemistry (Drug Design), 279 (2002) 106–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Lobell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobell, M., Sivarajah, V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Divers 7, 69–87 (2003). https://doi.org/10.1023/B:MODI.0000006562.93049.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006562.93049.36

Navigation