Abstract
We have investigated whether three important ADME (absorption, distribution, metabolism, excretion) related properties (aqueous solubility, human plasma protein binding, and human volume of distribution at steady-state) can be predicted from chemical structure alone if only the predicted predominant ionisation state and lipophilicity (calculated logP [P = octanol-water partition coefficient]) are considered. A simple, fast method for the in silico prediction of aqueous solubility of predominantly uncharged compounds has been developed, while some potential is shown for the prediction of predominantly charged or zwitterionic compounds. Ten other known in silico prediction methods for aqueous solubility have also been evaluated. It has furthermore been demonstratedthat the molecular weight (MW) profile of training sets for the development of aqueous solubility prediction methods can influence their predictive performance with regard to test sets of either matching or diverging profiles. The same property descriptors which have been found most relevant for the prediction of aqueous solubility have also proved useful for the prediction of human plasma protein binding and human volume of distribution at steady state.
References
Hansch, C., Quinlan, J. E. and Lawrence, G. L., The Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids, J. Org. Chem., 33 (1968) 347–350.
Suzuki, T., Development of an automatic estimation system for both the partition coefficient and aqueous solubility, J. Comp.-Aid. Mol. Design, 5 (1991) 149–166.
Meylan, W. M., Howard, P. H. and Boethling, R. S., Improved method for estimating water solubility from octanol/water partition coefficient, Environ. Toxicol. Chem., 15 (1996) 100–106.
Morris, J. J. and Bruneau, P. P., Prediction of physicochemical properties, Meth. Princ. Med. Chem., 10 (2000) 33–56.
Meylan, W. M. and Howard, P. H., Estimating log P with atom/fragments and water solubility with log P, Persp. Drug Disc. Design, 19 (2000) 67–84.
Jorgensen, W. L. and Duffy, E. M., Prediction of drug solubility from Monte Carlo simulations, Bioorg. Med. Chem. Lett., 10 (2000) 1155–1158.
McFarland, J. W., Estimating the water solubilities of crystalline compounds from their chemical structures alone, J.Chem. Inf. Comput. Sci., 41 (2001) 1355–1359.
Jain, N. and Yalkowsky, S. H., Estimation of the aqueous solubility 1: Application to organic nonelectrolytes, J. Pharm. Sci., 90 (2001) 234–252.
Liu, R. and So, S. S., Development of quantitative structureproperty relationship models for early ADME evaluation in drug discovery. 1. Aqueous Solubility, J. Chem. Inf. Comput. Sci., 41 (2001) 1633–1639.
Livingstone, D. J., Ford, M. G., Huuskonen, J. J. and Salt, D. W., Simultaneous prediction of aqueous solubility and octanol/water partition coefficient based on descriptors derived from molecular structure, J. Comp.-Aid. Mol. Design, 15 (2001) 741–752.
Klopman, G. and Zhu, H., Estimation of the aqueous solubility of organic molecules by the group contribution approach, J. Chem. Inf. Comput. Sci., 41 (2001) 439–445.
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A. and Giralt, F., A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 1177–1207.
McElroy, N. R. and Jurs, P. C., Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure, J. Chem. Inf. Comput. Sci., 41 (2001) 1237–1247.
Ran, Y. and Yalkowsky, S. H., Prediction of drug solubility by the general solubility equation (GSE), J. Chem. Inf. Comput. Sci., 41 (2001) 354–357.
Ran, Y., Ran, N. and Yalkowsky, S. H., Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE), J. Chem. Inf. Comput. Sci., 41 (2001) 1208–1217.
Peterson, D. L. and Yalkowsky, S. H., Comparison of two methods for predicting aqueous solubility, J. Chem. Inf. Comput. Sci., 41 (2001) 1531–1534.
Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Del. Rev., 46 (2001) 3–26.
Huuskonen, J., Estimation of aqueous solubility in drug design, Comb. Chem. High Throughput Scr., 4 (2001) 311–316.
Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Internet software for calculation of lipophilicity and aqueous solubility of chemical compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 246–252.
Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Estimation of aqueous solubility of chemical compounds using E-state indices, J. Chem. Inf. Comput. Sci., 41 (2001) 1488–1493.
Tetko, I. V. and Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci., 42 (2002) 1136–1145.
Jorgensen, W. L. and Duffy, E. M., Prediction of drug solubility from structure, Adv. Drug Del. Rev., 54 (2002) 355–366.
Dearden, J. C., Netzeva, T. I. and Bibby, R., Comparison of a number of commercial software programs for the prediction of aqueous solubility, J. Pharm. Pharmacol., 54(Suppl) (2002) S-66.
Dearden, J. C., Netzeva, T. I. and Bibby, R., A comparison of commercially available software for the prediction of aqueous solubility, Poster presentation, Euro-QSAR 2002, Bournemouth, 8–13 Sep. 2002.
Stahura, F. L., Godden, J. W. and Bajorath, J., Differential Shannon entropy analysis identifies molecular property descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 550–558.
Raevsky, O. A., Trepalin, S. V., Trepalina, H. P., Gerasimenko, V. A. and Raevskaja, O. E., Slipper-2001 – Software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 540–549.
Engkvist, O. and Wrede, P., High-throughput, in silico prediction of aqueous solubility based on one-and two-dimensional descriptors, J. Med. Chem. Inf. Comput. Sci., 42 (2002) 1247–1249.
Wanchana, S., Yamashita, F. and Hashida, M., Quantitative structure/property relationship analysis on aqueous solubility using genetic algorithm-combined partial least squares method, Pharmazie, 57 (2002) 127–129.
Bergstrom, C. A. S., Norinder, U., Luthman, K. and Artursson, P., Experimental and computational screening models for prediction of aqueous drug solubility, Pharm. Res., 19 (2002) 182–188.
Klamt, A., Eckert, F. Hornig, M., Beck, M.E. and Burger, T., Prediction of aqueous solubility of drugs and pesticides with COSMO-RS, J. Comput. Chem., 23 (2002) 275–281.
Comer, J. and Tam, K., Lipophilicity Profiles: Theory and Measurement, in B. Testa, H. van de Waterbeemd, G. Folkers and R. Guy (eds), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta, Zürich, 2001, pp. 275–304.
Lobell, M., Molnár, L. and Keserü G. M., Recent advances in the prediction of blood-brain partitioning from molecular structure, J. Pharm. Sci., 92 (2003) 360–379.
Ghose, A. K. and Crippen, G. M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships 1. Partition coefficients as a measure of hydrophobicity, J. Comp. Chem., 7 (1986) 565–577.
Ghose, A. K. and Crippen, G. M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships III: Modelling hydrophobic interactions, J. Comp. Chem., 9 (1988) 80–90.
Viswanadhan, V. N., Ghose, A. K., Revankar, G. R. and Robins, R. K., Atomic physicochemical parameters for threedimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci., 29 (1989) 163–172.
Ghose, A. K., Viswanadhan, V. N. and Wendoloski, J. J., Prediction of hydrophobic (liphophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. A., 102 (1998) 3762–3772.
Chou, J. T. and Jurs, P. C., Computer-assisted computation of partition coefficients from molecular structures using fragment constants, J. Chem. Inf. Comput. Sci., 19 (1979) 172–178.
Leo, A. J. and Hoekman, D., Calculating logP (oct) with no missing fragments; the problem of estimating new interaction parameters, Persp. Drug Disc. Design, 18 (2000) 19–38.
Petrauskas, A. A. and Kolovanov, E. A., ACD/Log P method description, Persp. Drug Disc. Design, 19 (2000) 99–116.
Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E. P., Internet software for calculation of lipophilicity and aqueous solubility of chemical compounds, J. Chem. Inf. Comput. Sci., 41 (2001) 246–252.
Tetko, I. V. and Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci., 42 (2002) 1136–1145.
Meylan, W. M. and Howard, P. H., Atom/fragment contribution method for estimating octanol-water partition coeffi-cients, J. Pharm. Sci., 84 (1995) 83–92.
Navia, M. A. and Chaturvedi, P. R., Design principles for orally bioavailable drugs, Drug Disc. Today, 1 (1996) 179–189.
Ishizaki, J., Yokogawa, K., Nakashima, E. and Ichimura, F., Prediction of changes in the clinical pharmacokinectics of basic drugs on the basis of Octanol-Water partition coefficients, J. Pharm. Pharmacol., 49 (1997) 762–767.
Tucker, T. J., Lumma, W. C., Lewis, S. D., Gardell, S. J., Lucas, B. J., Baskin, E. P., Woltmann, R., Lynch, J. J., Lyle, E. A., Appleby, S. D., Chen, I. W., Dancheck, K. B. and Vacca, J. P., Potent noncovalent thrombin inhibitors that utilize the unique amino acid D-Dicyclohexylalanine in the P3 position. Implications on oral bioavailability and antithrombotic efficacy, J. Med. Chem., 40 (1997) 1565–1569.
Saiakhov, R. D., Stefan, L. R. and Klopman, G., Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs, Persp. Drug Disc. Design, 19 (2000) 133–155.
Mao, H., Craig, P. J. R., Bell, R., Borre, T. and Fesik, S. W., Rational design of diflunisal analogues with reduced affinity for human serum albumin, J. Am. Chem. Soc., 123 (2001) 10429–10435.
Lombardo, F., Obach, R. S., Shalaeva, M. Y. and Gao, F., Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data, J. Med. Chem., 45 (2002) 2867–2876.
Benet, L. Z., Øie, S. and Schwartz, J. B., Design and optimization of dosage regimens; Pharmacokinetic data, in L. S. Goodman, L.E. Limbird and A. G. Gilman (eds), Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 9th Ed., 1996, pp. 1707–1792.
Olson, R. E. and Christ, D. D., Plasma protein binding of drugs, Ann. Rep. Med. Chem., 31 (1996) 327–336.
Riley, R. J., Martin, I. J. and Cooper, A. E., The influence of DMPK as an integrated partner in modern drug discovery, Curr. Drug Metab., 3 (2002) 527–550.
Obach, R. S., Baxter, J. G., Liston, T. E., Silber, B. M., Jones, B. C., MacIntyre, F., Rance, D. J. and Wastall, P., The prediction if human pharmacokinetic parameters from preclinical and in vitro metabolism data, J. Pharmacol. Exp. Ther., 283 (1997) 46–58.
Poulin, P. and Theil, F. P., Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution, J. Pharm. Sci., 91 (2002) 129–156.
Davies, B. and Morris, T., Physiological parameters in laboratory animals and humans, Pharm. Res., 10 (1993) 1093–1095.
van der Waterbeemd, H., Smith, D. A. and Jones, B. C., Lipophilicity in PK design: methyl, ethyl, futile, J. Comp. Mol. Design, 15 (2001) 273–286.
Davis, A. M. and Riley, R., The impact of physical organic chemistry on the control of drug-like properties, Royal Society of Chemistry (Drug Design), 279 (2002) 106–123.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lobell, M., Sivarajah, V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Divers 7, 69–87 (2003). https://doi.org/10.1023/B:MODI.0000006562.93049.36
Issue Date:
DOI: https://doi.org/10.1023/B:MODI.0000006562.93049.36