Impacts of Global Climate Change on Mediterranean Agrigulture: Current Methodologies and Future Directions. An Introductory Essay

  • C. Rosenzweig
  • F. N. Tubiello


Current trends in Mediterranean agriculture reveal differences between the Northern and Southern Mediterranean countries as related to population growth, land and water use, and food supply and demand. The changes in temperature and precipitation predicted by general circulation models for the Mediterranean region will affect water availability and resource management, critically shaping the patterns of future crop production. Three companion papers analyze in detail future impacts of predicted climate change on wheat (Triticum aestivum L.) and maize (Zea mays L.) production in Spain, Greece, and Egypt, and test farm- level adaptation strategies such as early planting and cultivar change with the aid of dynamic crop models. Strategies to improve the assessment of the potential effects of future climate change on agricultural production are discussed.

climate change mediterranean region agriculture cereal production impact assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., Curry, R. B., Jones. J. W., Boote, K. J., and Hartwell Allen, Jr: 1990. Global climate change and US agriculture, Nature 345, 219-224.CrossRefGoogle Scholar
  2. Baric, A., and Gasparovic, F.: Implication of climatic change on the socio-economic activities in the Mediterranean coastal zones, in Climatic Change and the Mediterranean, Edited by J. Jeftic, J. D. Milliman, and G. Sestini, UNEP, New York.Google Scholar
  3. Bindi, M., Maracchi, G., and Miglietta, F.: 1993. Effects of climate change on the ontomorphogenic development of winter wheat in Italy, in The effects of Climate Change on Agricultural and Horticultural Potential in Europe, edited by Kenny, G. J, Harrison, P. A., and Parry, M. L., Environmental Change Unit, University of Oxford, Oxford, England.Google Scholar
  4. Cubash, U., Hasselmann, K., Hock, H., Meier-Reimer E., Mikolajewics, U., Santer, B. D., and Sausen, R.: 1992. Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model, Clim. Dyn. 8, 55-69.Google Scholar
  5. Cushman, R. M., Farrel, M. P., and Koomanoff, F. A.: 1988. Climate and regional resource analysis: The effect of scale on resource homogeneity, Clim. Change 13(2), 129-147.CrossRefGoogle Scholar
  6. Delecolle, R., Ruget, F., Gosse, G., and Ripoche, D.: 1995. Possible effects of climate change in wheat and maize crops in France, in: Climate Change and Agriculture: Analysis of Potential International Impacts, Rosenzweig, C. et al. (Eds), ASA Special Publication No. 59, Madison, WI, 382 pp.Google Scholar
  7. Easterling, W. E., McKenney, M. S., Rosenberg, N. J., and Lemon, K. M.: 1992. Simulations of crop responses to climate change: effects with present technology and no adjustments, Agr. For. Meteorol. 59, 53-73.CrossRefGoogle Scholar
  8. Elliot, E. T. and Cole, C. V.: 1989. A perspective on agroecosystem science, Ecology, 70(6), 1597-1602.CrossRefGoogle Scholar
  9. El-Shaer, M. H., Rosenzweig, C., Iglesias, A., Eid, H. M., and Hillel, D.: 1996. Possible scenarios for Egyptian agriculture in the future, Mitig. and Adapt. Strat. for Glob. Change, this issue.Google Scholar
  10. Eid, H. M.: 1994. Impact of climate change on maize and wheat yields in Egypt, in Implications of Climate Change for International Agriculture: Crop Modeling Study, Rosenzweig, C., and Iglesias, A., (Eds), EPA, Washington, DC.Google Scholar
  11. Engels, T. and Jones, J. W.: 1995. Agricultural and environmental geographic information system for MS-Window. User's manual, Agricultural and Biological Engineering, University of Florida, Gainesville, Florida.Google Scholar
  12. FAO Production Yearbook, 1961-1993, United Nations Food and Agriculture Organization, Rome.Google Scholar
  13. Hanninen, H.: 1995. Assessing ecological implications of climatic change: Can we rely on our simulation models?, Clim. Change, 31(1), 1-4.CrossRefGoogle Scholar
  14. Hansen, J., Russel, G., Lacis, A., Fung, I., Rind, D., and Stone, P.: 1983. Efficient three-dimensional global models for climate studies: models I and II, Mon. Weather Rev. 111, 609-662.CrossRefGoogle Scholar
  15. Hansen, J., Fung, I., Rind, D., Lebedeff, S., Ruedy, R., and Russel, G.: 1988. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res. 93(D8), 9341-9364.CrossRefGoogle Scholar
  16. Iglesias, A. and Minguez, M. I.: 1996. Modeling crop-climate interaction in Spain: Vulnerability and adaptation of different agricultural systems to climate change, Mitig. and Strat. for Clim. Change, this issue.Google Scholar
  17. Iglesias, A., and Minguez, M. I.: 1995. Perspectives for maize production in Spain under climate change, in Agriculture: Crop Modeling Study, Rosenzweig, C., and Iglesias, A., (Eds), EPA, Washington, DC.Google Scholar
  18. Imeson, A. C., and Emmer, I. M.: Implication of climatic change on land degradation in the Mediterranean, in Climatic Change and the Mediterranean, Edited by J. Jeftic, J. D. Milliman, and G. Sestini, UNEP, New York.Google Scholar
  19. IPCC. Climate Change, 1995: Impacts, Adaptations and Mitigations of Climate Change: Scientific-Technical Analyses, 1996. R. T. Watson, M. C. Zinyowera, R. H. Moss (Eds), Cambridge University Press, Cambridge, 890 pp.Google Scholar
  20. IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations, 1994. Carter, T. R., Parry, M. L., Harasawa, H., and Nishioka, S. (Eds), University College of London, UK, and Center for Global Environmental Research, Japan, 59 pp.Google Scholar
  21. Jones, C. A. and Kiniry, J. R.: 1986. CERES-Maize: A simulation model of maize growth and development, Texas A&M University Press, College Station, TX, 194 pp.Google Scholar
  22. Katz, R. W. and Brown, B. G.: 1992. Extreme events in a changed climate: Variability is more important than averages, Clim. Change 21(3), 289-301.CrossRefGoogle Scholar
  23. Kapetanaki, G. and Rosenzweig, C.: 1996. Impact of climate change on maize yield in central and northern Greece: A simulation study with CERES-Maize, Mitig. and Adapt. Strat. for Glob. Change, this issue.Google Scholar
  24. Kimball, B. A.: 1983. Carbon Dioxide and agricultural yield: an assemblage and analysis of 430 prior observation, Agronomy J. 75, 779-786.CrossRefGoogle Scholar
  25. Lawlor, D. W. and Mitchell, R. A. C.: 1991. The effects of increased CO2 on crop photosynthesis and productivity: A review of field studies, Plant, Cell and Env. 14(8): 729-739.CrossRefGoogle Scholar
  26. Le Houerou, H. N.: 1992. Vegetation and land use in the Mediterranean basin by the year 2050: A prospective study, in Climatic Change and the Mediterranean, Edited by J. Jeftic, J. D. Milliman, and G. Sestini, UNEP, New York.Google Scholar
  27. Lindh, G., Hydrological and water resources impact of climatic change, in Climatic Change and the Mediterranean, Edited by J. Jeftic, J. D. Milliman, and G. Sestini, UNEP, New York.Google Scholar
  28. Manabe, S. and Weatherland, R. B.: 1987. The effects of doubling the CO2 concentration on the climate of a general circulation model, J. Atmos. Sci. 44, 1211-1235.CrossRefGoogle Scholar
  29. Manabe, S., Spelman, M. J., and Stouffer, R. J.: 1992. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response, J. Climate 5, 105-126.CrossRefGoogle Scholar
  30. Matthews, K. B., MacDonald, A., Aspinall, R. J., Hudson, G., Law, A. N. R., and Paterson, E.: 1994. Climatic soil moisture deficit-Climate soil data integration in a GIS, Clim. Change 28(3), 273-287.CrossRefGoogle Scholar
  31. Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1992. Effects of changes in interannual climatic variability on CERES-Wheat yields: Sensitivity and 2 × CO2 general circulation model studies, Agric. For. Meteor. 62, 169-189.CrossRefGoogle Scholar
  32. Mearns, L. O. and Rosenzweig, C.: 1996. Formulation of climate change scenarios incorporating changes in daily climate variability and application to crop models, in: Assessing Climate Change: The Story of the Model Evaluation Consortium for Climate Assessment, Chap. 15, W. Howe and A. Henderson-Sellers (Eds), Academic Publishers, in press.Google Scholar
  33. Mendelsohn, R. and Rosenberg, N. J.: 1994, Framework for integrated assessments of global warming impacts, Clim. Change 28(1-2), 15-44.CrossRefGoogle Scholar
  34. Mitchell, R. A. C., Lawlor, D. W., Mitchell, J. V., Gibbard, C. L., White, E. M., and Porter, J. R.: 1996. Effects of elevated CO2 concentration and increased temperature on winter wheat: Test of ARCWHEAT1 simulation model, Plant, Cell and Env. 18, 736-748.CrossRefGoogle Scholar
  35. Morettini, A.: 1972. Ambiente climatico e pedologico, Olivicoltura 12, 219-246.Google Scholar
  36. Murphy J. M., and Mitchell J. F. B, 1995. Transient response of the Hadley Centre coupled ocean-atmosphere to increasing carbon dioxide. Part I: Control climate and flux adjustment. Part II: Spatial and temporal structure of response, J. Climate 8, 36-80.CrossRefGoogle Scholar
  37. Parton, W. J., Schimel, D. S.,and Ojima, D. S.: 1994. Environmental change in grasslands: Assessment using models, Clim. Change 28(1-2), 111-141.CrossRefGoogle Scholar
  38. Paulsen, G.: 1994. High temperature response of crop plants, in Physiology and Determination of Crop Yield, K. J. Boote, J. M. Bennett, T. R. Sinclair, and G. M. Paulsen (Eds), American Society of Agronomy, Madison, WI, pp. 365-389.Google Scholar
  39. Riebsame, W. E., Meyer, W. B., and Turner II, B. L.: 1994. Modeling land use and land cover as part of global environmental change, Clim. Change 28(1-2), 45-63.CrossRefGoogle Scholar
  40. Ritchie, J. T.: 1985, ‘A User-Oriented Model of the Soil Water Balance’ in Wheat Growth and Modeling, W. Day and R. K. Arkin (Eds), Plenum Press, New York, N.Y.Google Scholar
  41. Ritchie, J., Singh, U., Godwin, D., and Hunt, L.: 1989. A user's guide to CERES-Maize V.2-10. Michigan State University — IFDC-IBSNAT.Google Scholar
  42. Rosenberg, N. J.: 1993. Towards an integrated assessment of climate change: the MINK study, Clim. Change, 24, 1-175.CrossRefGoogle Scholar
  43. Rosenzweig, C. and Hillel, D.: 1993. The dust Bowl of the 1930s: analog of the greenhouse effect in the Great Plains?, J. Env. Quality 22, 9-22.CrossRefGoogle Scholar
  44. Rosenzweig, C. and Parry, M. L.: 1994. Potential impact of climate change on world food supply, Nature 367, 133-138.CrossRefGoogle Scholar
  45. Rosenzweig, C., Ritchie, J. T., Jones, J. W., Tsuji, G. Y., Hildebrand, P.: 1995. Climate Change and Agriculture: Analysis of Potential International Impacts. ASA Spec. Publ. No. 59, American Society of Agronomy, Madison, WI, 382 pp.Google Scholar
  46. Rosenzweig, C. and Hillel, D.: 1995. Potential impact of climate change on agriculture and world food supply, Consequences 1, 23-32.Google Scholar
  47. Semenov, M. A. and Porter, J. R.: 1995. Climatic variability and the modeling of crops, Agr. For. Meteor. 73(3-4), 265-283.CrossRefGoogle Scholar
  48. Skiles, J. W.: 1995. Modeling climate change in the absence of climate change data, Clim. Change 30(1), 1-4.CrossRefGoogle Scholar
  49. Tubiello, F. N, Rosenzweig, C. and Volk, T.: 1995. Interactions of CO2, temperature, and management practices: simulations with a modified CERES-Wheat, Agr. Systems 49, 135-152.CrossRefGoogle Scholar
  50. Wigley, T. M. L., 1992. Future climate on the Mediterranean basin with particular emphasis on changes in precipitation, in Climatic change and the Mediterranean, Edited by J. Jeftic, J. D. Milliman, and G. Sestini, UNEP New York.Google Scholar
  51. Wilson, C. A., and Mitchell, J. F. B.: 1987. A 2′ CO2climate sensitivity experiment with a global climate model including a simple ocean, final report CEC contract CL-114 UK(H), British Meteor. Office, Bracknell, UK.Google Scholar
  52. Wolf, J. and Van Diepen, C. A.: 1995. Effects of climate change on grain maize yield potential in the European Community, Clim. Change 29(3), 299-331.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • C. Rosenzweig
    • 1
  • F. N. Tubiello
    • 1
  1. 1.Center for Climate Systems ResearchColumbia University and NASA-Goddard Institute for Space StudiesNew York

Personalised recommendations