A Land Cover Change Monitoring Program: Strategy for an International Effort

  • D.L. Skole
  • C. O. Justice
  • J.R.G. Townshend
  • A. C. Janetos
Article
  • 86 Downloads

Abstract

An international system for monitoring land cover change is needed to support a range of scientific and policy objectives. Although much of the technology and methods are readily available, such a program has yet to be implemented. This paper outlines the rationale, requirements, and strategy for implementing a land cover-monitoring program using satellite remote sensing, field and ground measurements, and models and assessments. The proposed program builds on existing activities throughout the world and is designed to simultaneously meet the needs of the international policy, global change research, and national resource management. Outputs from this program would provide support to the Framework Convention on Climate Change, lead to the development of consistent country-level emission inventories, and address important scientific problems in global change research such as closing the global carbon budget.

carbon cycle emission inventories global land cover monitoring satellites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, D.S. and D.L Skole. 1996. Characterizing land cover dynamics using multi-temporal imagery. lnternational Journal of Remote Sensing, 17: 835–839.Google Scholar
  2. Belward A.S., and Loveland., T.R., 1995, The IGBP-DIS 1-km Land Cover Project: Remote Sensing in Action. In Proceedings of the 21st Annual Conference of the Remote Sensing Society, Southampton, United Kingdom, 1,099–1,106.Google Scholar
  3. Conway, J., Eva, H., D'Souza, G., 1996, Comparison of the detection of deforested areas using ERS-1 ASTR and NOAA-11 AVHRR with reference to ERS-1 SAR data: a case study in the Brazilian Amazon, International Journal of Remote Sensing, 17:3419–3440.Google Scholar
  4. Crutzen, P and Andreae A., 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1678.Google Scholar
  5. DeFries, R. S., Field, C.B., Fung, I., Justice, C.O., Los, S., Matson, P.A., Matthews, E., Mooney, H.A., Potter, C.S, Prentice, K., Sellers, P.J., Townshend, J.R.G., Tucker, C.J., Ustin, S.L., Vitousek, P.M., 1995, Mapping the land surface for global atmosphere-biosphere models: Towards continuous distributions of vegetation's functional properties, Journal of Geophysical Research, 100:20867–20882.CrossRefGoogle Scholar
  6. DeFries, R., Hansen, M., Steininger, M., Dubayah, R., Sohlberg, R., Townshend, J., 1997, Subpixel forest cover in central Africa from multisensor, multitemporal data, Remote Sensing of Environment, 60:228–246.CrossRefGoogle Scholar
  7. Houghton, J.T., L.G. Meira Fihlo, J. Bruce, H. Lee, B.A. Chandler, E. Haites, N. Harris, and K. Maskell (eds.). 1995. Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press.Google Scholar
  8. Houghton, R.A. 1994. Emissions of carbon from land use change. In The Carbon Cycle. T.M.L Wigley and D. Schimel (eds.). Cambridge University Press, New York.Google Scholar
  9. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Mclillo, C.A. Palm, B.J. Peterson, G.R. Shaver, G.M. Woodwell, B. Moore, D.L. Skole, and N. Myers. 1987. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux. Tellus. 39B:122–39.CrossRefGoogle Scholar
  10. Houghton, R.A. and J.L. Hackler. 1995. Continental Scale Estimates of the Biotic Carbon Flux from Land Cover Change: 1850 to 1980. ORNL/CDIAC-79, NDP-050, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 144pp.Google Scholar
  11. Houghton, R.A. and D.L Skole. 1990. Carbon. In, The Earth as Transformed by Human Action. Turner et al. (eds.) Cambridge University Press. New York.Google Scholar
  12. IGBP, 1993. Relating Land Use and Global Land Cover Change. IGBP Report 24, IHDP Report 5. International Geosphere-Biosphere Programme, Stockholm.Google Scholar
  13. IGBP/IHDP, 1995. Land Use and Land Cover Change Science Research Plan. IGBP Report 35, IHDP Report 7. International Geosphere-Biosphere Programme, Stockholm. 132 pp.Google Scholar
  14. Janetos, A. et al. 1997. Workshop Report: CEOS Pilot Project: Global Observations of Forest Cover (GOFC) Ottawa, Ontario, Canada, July 7–10, 1997.Google Scholar
  15. Justice C.O., J.P. Malingreau and A. Setzer, 1993. Satellite remote sensing of fires: potential and limitation. In Crutzen P. and J. Goldammer (eds) Fire In the Environment; Its Ecological, Climatic and Atmospheric Chemical Importance, John Wiley and Sons, Chichester.Google Scholar
  16. Justice C.O., Kendall J.D., Dowty P.R. and Scholcs R.J. 1996. Satellite remote sensing of fires during the SAFARI Campaign using NOAA-AVHRR data. Journal of Geophysical Research, 101, 23851–23863.CrossRefGoogle Scholar
  17. Malingreau, J. P. and C.O. Justice, 1992. Satellite monitoring of tropical forests: a commentary on current status and institutional roles. Proceedings of the International Space Year, World Forest Watch Conference, Sao Jose Dos Campos, Brazil, CEC-EUR 14561 EN.Google Scholar
  18. Marland, G. and R.M. Rotty. 1984. Carbon dioxide emissions from fossil fuels: a procedure for estimation of results for 1950–82. Tellus 36(b):232–61.Google Scholar
  19. Marland, G., R.J. Andres, and T.A. Boden. 1994. Global, regional, and national CO2 emissions. pp. 505–584. In, Boden, T.A., D.P. Kaiser, R.J. Sepanski, and F.W. Stoss (eds.), Trends '93: A Compendium of Data on Global Change. ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
  20. Mayaux, P. and Lambin, E.F., 1997, Tropical forest area measured from global land cover classifications: Inverse calibration models based on spatial textures. Remote Sensing Environment, 59:29–43.CrossRefGoogle Scholar
  21. Meyer, W.B. and B.L. Turner 1994. Changes in Land Use and Land Cover: a global perspective. Cambridge University Press. 533pp.Google Scholar
  22. Moran, E.F., E. Brondizio, P. Mausel, Y. Wu. 1994. Integrating Amazonain vegetation, land-use, and satellite data. Bioscience. 44:329–338.CrossRefGoogle Scholar
  23. Ojima, D.S., K.L. Galvin, and B.L. Turner. 1994. The global impact of land use change. Bioscience 44(5):300–304.CrossRefGoogle Scholar
  24. Roy, D., Kennedy, P., Folving, S., 1997. Combination of the normalised difference vegetation index and surface temperature for regional scale European forest cover mapping using AVHRR data, International Journal of Remote Sensing, 18:1189–1195.CrossRefGoogle Scholar
  25. Running, S.W. Justice C.O., Salomonson V.V., Hall, D., Barker J., Kaufman Y.J., Strahler A.R., Muller J-P., Vanderbilt, V, Wan, Z.M., Teillet, P., Carneggie, D., 1994. Terrestrial remote sensing science and algorithms planned for the MODIS-EOS. lnternational Journal of Remote Sensing, 15(17), 3587–3620.Google Scholar
  26. Running, S.W., Loveland, T.R., Pierce, L.L., R.R. Nemani, and Hunt, E.R., 1995, A Remote Sensing Based Vegetation Classification Logic for Global Land Cover Analysis, Remote Sensing of Environment, 51;3948.CrossRefGoogle Scholar
  27. Schimel, D., I.G. Enting, M. Heimann, T.M.L. Wigley, D. Raynaud, D. Alves, and U. Seigenthaler, 1995. CO2 and the carbon cycle. In, Houghton, J.T., L.G. Meira Fihlo, J. Bruce, H. Lee, B.A. Chandler, E. Haites, N. Harris, and K. Maskell (eds), Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press.Google Scholar
  28. Scholes R.J., Kendall J. and Justice C.O. 1996. The quantity of biomass consumed in Southern Africa. Journal of Geophysical Research, 101, 23667–23676.CrossRefGoogle Scholar
  29. Skole, D.L. 1994. Data on global land cover change: acquisition, assessment, and analysis. In Meyer, W.B. and B.L. Turner, (eds.), Global Land Cover and Land Use Change, Cambridge University Press, Cambridge.Google Scholar
  30. Skole, D.L., W.H. Chomentowski, W.A. Salas, and A.D. Nobre, 1994. Physical and human dimensions of tropical deforestation in the Brazilian Amazon, Bioscience 44(5): 314–322.CrossRefGoogle Scholar
  31. Skole, D.L., W.A. Salas, and C. Silapahong, in press. Interannual variation in the terrestrial carbon cycle: significance of Asian tropical forest conversion to imbalances in the global carbon budget. In, Galloway, J. (ed.) Global Change in Asia, Cambridge University PressGoogle Scholar
  32. Skole, D.L. and C.J. Tucker, 1993. Tropical deforestation, fragmented habitat, and adversely affected habitat in the Brazilian Amazon: 1978–1988. Science 260:1905–1910.Google Scholar
  33. Steininger, M.K. 1996. Tropical secondary forest growth in the Amazon: age, area and change estimation with Thematic Mapper data. International Journal of Remote Sensin. 17:9–17.Google Scholar
  34. Townshend, J. R. G., (ed) 1992, Improved global data for land applications, IGBP report number 20. (IGBP secretariat, Royal Swedish Academy of Sciences, Box 50005, S-10405, Stockholm, Sweden).Google Scholar
  35. Townshend J.R.G., Justice C.O., Skole D., Malingreau J.P., Cihlar J., Teilliet P., Sadowski F. and Ruttenberg S. 1994. The 1 km resolution global data set: needs of the International Geosphere Biosphere Program. International Journal of Remote Sensing 15; 3417–3442.Google Scholar
  36. Turner, B.L., W.C. Clark, R.W. Kates, J.F. Richards, J.T. Matthews, and W.B. Meyer. 1990. The Earth Transformed by Human Action, Cambridge University Press. Cambridge, 713 pp.Google Scholar
  37. Turner, B.L., B. Myers, and D.L. Skole, 1994. Global land use/land cover change: toward an integrated study, Ambio 23(1): 91–95.Google Scholar
  38. Walker, R.T. and Homma, A. 1996. Land Use and Land Cover Dynamics in the Brazilian Amazon: An Overview. Ecological Economics 18(1): 67–80.CrossRefGoogle Scholar
  39. Ward D.E., Hao W.M., Susott R.A., Babbitt, R.E., Shea R.W., Kauffman J.B. and Justice C.O. 1996. Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. Journal of Geophysical Research, 23:569–576.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • D.L. Skole
    • 1
  • C. O. Justice
    • 2
  • J.R.G. Townshend
    • 3
  • A. C. Janetos
    • 4
  1. 1.Basic Science and Remote Sensing Initiative, Department of GeographyMichigan State UniversityUSA
  2. 2.Global Environmental Change Program, Department of Environmental SciencesUniversity of VirginiaUSA
  3. 3.Department of Geography & Institute of Advanced, Computing StudiesUniversity of MarylandUSA
  4. 4.Office of Mission to Planet EarthNational Aeronautics and Space AdministrationUSA

Personalised recommendations