Skip to main content
Log in

Zebrafish retinal slice preparation

  • Published:
Methods in Cell Science

Abstract

This paper describes the protocol for generating thin (∼100 µm) slices of the zebrafish retina. Retinal slices retain the cytoarchitecture and synaptic contacts found in vivo, allowing neurons to be identified prior to physiological recordings. These characteristics distinguish retinal slices from both isolated cell and eyecup preparations. Studies using the zebrafish retinal slice have classified different retinal cell types, documented voltage- and ligand-gated current responses in distal bipolar neurons, and correlated physiological responses with neuronal morphology. Data collected using this protocol have provided baseline information about retinal circuitry that can be directly applied to behavioral studies examining visual function and/or mutants with visual system defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowling JE (1987). The retina, an approachable part of the brain. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  2. Dowling JE, Ehinger B (1978). The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society of London B. Biological Sciences 301: 7–26.

    Google Scholar 

  3. Kalloniatis M, Marc RE (1990). Interplexiform cells of the goldfish retina. Journal of Comparative Neurology 297: 340–358.

    Google Scholar 

  4. Marc RE, Lam DMK (1981). Glycinergic pathways in the goldfish retina. Journal of Neuroscience 1: 152–165.

    Google Scholar 

  5. Cajal RS (1892). La retina de los teleosteos y algunas observaciones sobre la de los vertebrados superiors. Amal de la Soc Esp des Hist Nat 21: 5–29.

    Google Scholar 

  6. Kraaij DA, Spekreijse H, Kamermans M (2000). The nature of surround-induced depolarizing responses in goldfish cones. Journal of General Physiology 115: 3–15.

    Google Scholar 

  7. Werblin F (1978). Transmission along and between rods in the tiget salamander retina. Journal of Physiology 280: 449–470.

    Google Scholar 

  8. Wu SM (1987). Synaptic connections between neurons in living slices of the larval tiger salamander retina. Journal of Neuroscience Methods 20: 139–149.

    Google Scholar 

  9. Mack AF, Fernald RD (1991). Thin slices of teleost retina continue to grow in culture. Journal of Neuroscience Methods 36: 195–202.

    Google Scholar 

  10. Euler T, Schneider H, Wassle H (1996). Glutamate response of bipolar cells in a slice preparation of the rat retina. Journal of Neuroscience 16: 2934–2944.

    Google Scholar 

  11. Boos R, Schneider H, Wassle H (1993). Voltage-and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. Journal of Neuroscience 13: 2874–2888.

    Google Scholar 

  12. DeVries SH, Schwartz EA (1999). Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397: 157–160.

    Google Scholar 

  13. Pang J-J, Gao F, Wu SM (2002a). Segregation and integration of visual channels: layer-by-layer computation of ON-OFF signals by amacrine cell dendrites. Journal of Neuroscience 22: 4693–4701.

    Google Scholar 

  14. Pang J-J, Gao F, Wu SM (2002b). Relative contributions of bipolar cell and amacrine cell inputs to light responses of ON, OFF, and ON-OFF retinal ganglion cells. Vision Research 42: 19–27.

    Google Scholar 

  15. Wu SM, Gao F, Maple BR (2000). Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. Journal of Neuroscience 20: 4462–4470.

    Google Scholar 

  16. Fan S-F, Yazulla S (1997). Electrogenic hyperpolarization-elicited chloride transporter current in blue cones of zebrafish retinal slices. Journal of Neurophysiology 77: 1447–1459.

    Google Scholar 

  17. Connaughton VP, Nelson R (2000). Axonal stratification patterns and glutamate-gated conductance mechanisms in zebrafish retinal bipolar cells. Journal of Physiology 524: 135–146.

    Google Scholar 

  18. Connaughton VP, Maguire G (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. European Journal of Neuroscience 10: 1350–1362.

    Google Scholar 

  19. Connaughton VP, Graham D, Nelson R (2003). Morphological identification of second-and third-order neurons in the zebrafish retina. Investigative Ophthalmology and Visual Science 44: E-abstract 4134.

    Google Scholar 

  20. Connaughton VP (2001). Organization of ON-and OFF-pathways in the zebrafish retina: neurotransmitter localization, electrophysiological responses of bipolar cells, and patterns of axon terminal stratification. Progress in Retinal Research 131: 161–176.

    Google Scholar 

  21. Connaughton VP, Allwardt B, Dowling JE (1999). Defective glutamate receptors in bipolar cells of zebrafish noa mutants. Investigative Ophthalmology and Visual Science 40: S441.

    Google Scholar 

  22. Bilotta J, Saszik S, DeLorenzo AS, Hardesty HR (1999). Establishing and maintaining a low-cost zebrafish breeding and behavioral research facility. Behavior Research Methods, Instruments, & Computers 31: 178–184.

    Google Scholar 

  23. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981). Improved patch-clamp techniques of high resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391: 85–100.

    Google Scholar 

  24. Burnside B, Adler R, O'Connor P (1983). Retinomotor pigment migration in the teleost retinal pigment epithelium I. roles for actin and microtubules in pigment granule transport and cone movement. Investigative Ophthalmology and Visual Science 24: 1–15.

    Google Scholar 

  25. Burnside B (2001). Light and circadian regulation of retinomotor movement. Progress in Brain Research 131: 477–485.

    Google Scholar 

  26. Stell WK, Ishida AT, Lightfoot DO (1977). Structural basis for On-and Off-center responses in retinal bipolar cells. Science 198: 1269–1271.

    Google Scholar 

  27. Famiglietti JEV, Kaneko A, Tachibana M (1977). Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198: 1267–1269.

    Google Scholar 

  28. Gan W-B, Gruntzendler J, Wong WT, Wong ROL, Lichtman JW (2000). Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron 27: 219–225.

    Google Scholar 

  29. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SCF, Driever W, Dowling JE (1995). A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Sciences 92: 10545–10549.

    Google Scholar 

  30. Stockton RA, Slaughter MM (1989). B-wave of the electroretinogram, a reflection of ON bipolar cell activity. Journal of General Physiology 93: 101–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connaughton, V.P. Zebrafish retinal slice preparation. Methods Cell Sci 25, 49–58 (2003). https://doi.org/10.1023/B:MICS.0000006853.54435.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICS.0000006853.54435.85

Navigation