Skip to main content
Log in

History of the Study of Biodiversity of Photosynthetic Bacteria

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The tendencies in the study of anoxygenic photosynthetic bacteria (APB) are considered in the review in the historical aspect, from the discovery of APB till the present day. The contribution made by the researchers of the Institute of Microbiology, Russian Academy of Sciences, to the study of the phylogeny, ecology, and morphophysiological diversity of APB is noted. At present, molecular biological approaches play a decisive role in ecology and taxonomy. The most important task at the modern stage of the development of microbiology is to maintain the continuity of the historically formed classical approaches in the study of APB diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bergey's Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1.

    Google Scholar 

  2. Kondrat'eva, E.N., Fotosinteziruyushchie bakterii (Phototrophic Bacteria), Moscow: Nauka, 1963.

    Google Scholar 

  3. Nadson, G.A., Chlorobium limicolaNads., Green Microorganisms with Nonfunctional Chlorophyll. II. On the Coloration and Pigments of Purple Bacteria, Byull. Gos. Imperatorskogo Botanicheskogo Sada, Sankt Petersburg, 1912, vol. 12, pp. 55–89.

    Google Scholar 

  4. Molish, H., Die Purpurbakterien nach neuen Untersuschung, Jena, 1907.

  5. Bawendam, 1924, cited in [2].

  6. Winogradsky, S., Zur Morphologie und Physiologie der Schwefelbakterien, Leipzig, 1988, p. 115. A. Felix.

  7. Van Niel, C.B., On the Morphology and Physiology of the Purple and Green Sulfur Bacteria, Arch. Mikrobiol., 1931, vol. 3, pp. 1–112.

    Google Scholar 

  8. Shaposhnikov, V.N., Osnitskaya, L.K., and Chudina, V.I., Development of the Purple Sulfur Bacterium Chromatium vinosumat Different Light Intensities, Mikrobiologiya, 1961, vol. 30, pp. 825–832.

    Google Scholar 

  9. Rozanova, E.P. and Khudyakova, A.Ya., Purple Bacteria in Oil Fields of Apsheron Peninsula, Mikrobiologiya, 1970, vol. 39, pp. 372–378.

    Google Scholar 

  10. Bergey's Manual of Determinative Bacteriology, 7th ed., Breed R.S. et al., Eds., Baltimore: Williams & Wilkins, 1994.

    Google Scholar 

  11. Pfennig, N., Photosynthetic Bacteria, Annu. Rev. Microbiol., 1967, vol. 21, pp. 285–324.

    Google Scholar 

  12. Pfennig, N., Phototrophic Green and Purple Bacteria: A Comparative, Systematic Survey, Annu. Rev. Microbiol., 1977, vol. 31, pp. 275–290.

    Google Scholar 

  13. Zavarzin, G.A., Biodiversity as a Component of the Biosphere-Geosphere System Providing for the Development of Order from Chaos, Metodologiya biologii: novye idei (sinergetika, semiotika, koevolyutsiya)(Methodology of Biology: New Ideas (Synergetics, Semiotics, Coevolution), Baksanskii, O.E., Ed., Moscow: Editorial URSS, 2001, pp. 151–176.

    Google Scholar 

  14. Gorlenko, V.M., Dubinina, G.A., and Kuznetsov, S.I., Ekologiya vodnykh mikroorganizmov (Ecology of Aquatic Microorganisms), Moscow: Nauka, 1977.

    Google Scholar 

  15. Bergey's Manual of Systematic Bacteriology, 8th ed., Staley, J.T. et al., Eds., Baltimore: Williams & Wilkins, 1989, vol. 3, pp. 1682–1697.

    Google Scholar 

  16. Keppen, O.I., Tourova, T.P., Kuznetsov, B.B., Ivanovsky, R.N., and Gorlenko, V.M., Proposal of Oscillochloridaceaefam. nov. on the Basis of a Phylogenetic Analysis of the Filamentous Anoxygenic Phototrophic Bacteria, and Emended Description of Oscillochlorisand Oscillochloris trichoidesin Comparison with Further New Isolates, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1529–1537.

    Google Scholar 

  17. Dubinina, G.A. and Gorlenko, V.M., A New Filamentous Green Phototrophic Bacterium with Gas Vacuoles, Mikrobiologiya, 1975, vol. 44, pp. 511–517.

    Google Scholar 

  18. Gorlenko, V.M., Krasil'nikova, E.N., Kikina, O.G., and Tatarinova, N.Yu., A New Motile Purple Sulfur Bacterium with Gas Vacuoles, Lamprobacter modestohalophilusnov. gen., nov. sp, Izv. akad. nauk SSSR. Ser. biol., 1979, vol. 5, pp. 755–767.

    Google Scholar 

  19. Gorlenko, V.M., Spore Formation in a Photoheterotrophic Budding Bacterium, Mikrobiologiya, 1969, vol. 38, p. 126.

    Google Scholar 

  20. Cohen-Bazire, G., Pfennig, N., and Kunishava, R., The Fine Structure of Green Bacteria, J. Cell Biol.,1964, vol. 22, pp. 207–225.

    Google Scholar 

  21. Imhoff, J.F., Phylogenetic Taxonomy of the Family Chlorobiaceaeon the Basis of 16S rRNA and fmo (Fenna-Matthews-Olson Protein Gene Sequences), Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 941–951.

    Google Scholar 

  22. Hanada, S., Takaichi, S., Matsuura, K., and Nakamura, K., Roseoflexus castenholziigen. nov., sp. nov., a Thermophilic, Filamentous, Photosynthetic Bacterium That Lacks Chlorosomes, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 187–193.

    Google Scholar 

  23. Pierson, B.K., Giovannoni, S.J., Stahl, D.A., and Castenholz, R.W., Heliothrix oregonensis, gen. nov., sp. nov., a Phototrophic Filamentous Gliding Bacterium Containing Bacteriochlorophyll a, Arch. Microbiol., 1985, vol. 142, pp. 164–167.

    Google Scholar 

  24. Osnitskaya, L.K. and Chudina, V.I., On the Carbon Metabolism of the Purple Sulfur Bacterium Chromatium vinosum, Mikrobiologiya, 1962, vol. 31, pp. 769–773.

    Google Scholar 

  25. Caumette, P., Guyoneaud, R., Imhoff, J.F., and Gorlenko, V.M., Thiocapsa marina, sp. nov., a New Purple Sulfur Bacterium Containing Okenone and Isolated from Several Brackish to Marine Environments, Int. J. Syst. Evol. Microbiol., submitted.

  26. Repita, D.J., Simpson, D.J., and Jannasch, H.W., Evidence for Anoxygenic Photosynthesis from the Distribution of Bacteriochlorophylls in Black Sea, Nature, 1989, vol. 342, pp. 69–72.

    Google Scholar 

  27. Gorlenko, V.M., Mikheev, P.V., Rusanov, I.N., Pimenov, V.N., and Ivanov, M.V., Ecophysiological Characteristics of a Phototrophic Bacterium from the Chemocline zone of the Black Sea, Mikrobiologiya, 2005, in press.

  28. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., and Imhoff, J.F., Thioalkalicoccus limnaeusgen. nov., sp. nov., a New Alkaliphilic Purple Sulfur Bacterium with Bacteriochlorophyll b, Int. J. Syst. Bacteriol., 2000, vol. 50, pp. 2157–2163.

    Google Scholar 

  29. Kondrat'eva, E.N. and Gogotov, I.N., Molekulyarnyi vodororod v metabolizme mikroorganizmov (Molecular Hydrogen in Microbial Metabolism), Moscow: Nauka, 1981.

    Google Scholar 

  30. Trüper, H.G. and Schlegel, H.G., Sulphur Metabolism in Thiorhodaceae.I. Quantitative Measurements on Growing Cells of Chromatium okenii, Antonie Van Leeuwenhoek, 1964, vol. 30, pp. 225–238.

    Google Scholar 

  31. Ivanovskii, R.N., Metabolism of Phototrophic Bacteria under Different Conditions of Growth, Doctoral (Biol.) Dissertation, Moscow: Moscow State University, 1985.

    Google Scholar 

  32. Fotosintez (Photosynthesis), vol. 1, Moscow: Mir, 1987 (Russian Translation).

  33. Kondrat'eva, E.N., Avtotrofnye prokarioty: uchebnoe posobie (A Textbook on Autotrophic Prokaryotes), Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  34. Bogorov, L.V., On the Properties of a Microorganism Isolated from a White Sea Estuarine, Mikrobiologiya, 1974, vol. 43, pp. 326–331.

    Google Scholar 

  35. Gorlenko, V.M., Oxidation for Thiosulfate by Amoebobacter roseusunder Microaerobic Conditions in the Dark, Mikrobiologiya, 1974, vol. 43, pp. 624–625.

    Google Scholar 

  36. Kondratieva, E.N., Zhukov, V., Ivanovsky, R.N., Petushkova, Y.P., and Monosov, E.Z., The Capacity of Phototrophic Sulfur Bacteria Thiocapsa roseopersicinafor Chemosynthesis, Arch. Microbiol., 1976, vol. 108, pp. 287–292.

    Google Scholar 

  37. Kampf, C. and Pfennig, N., Capacity of Chromatiaceaefor Chemotrophic Growth. Specific Respiration Rates of Thiocystis violaceaand Chromatium vinosum , Arch. Microbiol., 1980, vol. 127, pp. 125–135.

    Google Scholar 

  38. Hansen, T. and Van Gemerden, H.G., Sulfide Utilization by Purple Nonsulfur Bacteria, Arch. Mikrobiol, 1973, vol. 86, pp. 49-56.

  39. Keppen, O.I. and Gorlenko, V.M., A New Budding Nonsulfur Purple Bacteria Containing Bacteriochlorophyll band Capable of Sulfide Oxidation, Mikrobiologiya, 1975, vol. 44, pp. 258–264.

    Google Scholar 

  40. Kompantseva, E.I., A New Species of Budding Purple Bacteria Rhodopseudomonas julia, Mikrobiologiya, 1989, vol. 58, no. 2, pp. 319–325.

    Google Scholar 

  41. Gorlenko, V.M., The Role of Purple and Green Bacteria in the Carbon and Sulphur Cycles in Stratified Lakes, Interaction of Biogeochemical Cycles in Aqueous Systems, Part7, Degens, E. et al., Eds., Sonderband: SCOPE/UNEP, 1992, pp. 51–58.

    Google Scholar 

  42. Van Gemerden, H. and Mas, J., Ecology of Phototrophic Sulfur Bacteria, Anoxygenic Photosynthetic Bacteria, Blankenship, R.E. et al., Eds., Kluwer Academic, 1995, pp. 49–85.

  43. Gorlenko, V.M., Ecological Niches of Green Sulphur and Gliding Bacteria, Proc. EMBO Workshop on Green Photosynthetic Bacteria ( Nyborg, Denmark ). Green photosynthetic bacteria, Olson, J. et al., Eds., Plenum, 1988, pp. 257–267.

  44. Jorgensen, B.B. and Nelson, D.C., Bacterial Zonation, Photosynthesis and Spectral Light Distribution in Hot Spring Microbial Mats of Iceland, Microb. Ecol.,1988, vol. 16, pp. 133–148.

    Google Scholar 

  45. Van Gemerden. Coexistence of Organisms Competing for the Same Substrate: An Example among the Purple Sulfur Bacteria, Microb. Ecol., 1974, vol. 1, pp. 104–119.

    Google Scholar 

  46. Biebl, H. and Pfennig, N., Growth Yield Sulfur Bacteria in Mixed Cultures with Sulfur and Sulfate Reducing Bacteria, Arch. Microbiol., 1978, vol. 117, pp. 9–16.

    Google Scholar 

  47. Overmann, J., Cypionka, H., and Pfennig, N., An Extremely Low-Light-Adapted Phototrophic Sulfur Bacterium from the Black Sea, Limnol. Oceanogr., 1992, vol. 37, pp. 150–155.

    Google Scholar 

  48. Starynin, D.A. and Gorlenko, V.M., Sulfide-Oxidizing Spore-Forming Heliobacteria from a Thermal Sulfide Spring, Mikrobiologiya, 1993, vol. 62, pp. 556–563.

    Google Scholar 

  49. Bryantseva, I.A., Gorlenko, V.M., Turova, T.P., Kuznetsov, B.B., Lysenko, A.M., Bykova, S.A., Gal'chenko, V.F., Mityushina, L.L., and Osipov, G.A., Heliobacterium sulfidophilumsp. nov. and Heliobacterium undosumsp. nov.: Sulfide Oxidizing Heliobacteria from Thermal Sulfidic Springs, Mikrobiologiya,2000, vol. 69, pp. 396–406.

    Google Scholar 

  50. Imhoff, J.F., Sahl, H.G., Soliman, G.S., and Truper, H.G., The Wadi Natrun Chemical Composition and Microbial Mass Development in Alkaline Brines of Eutrophic Desert Lakes, Geomicrobiol. J., 1978, vol. 1, pp. 219–234.

    Google Scholar 

  51. Imhoff, J.F., True Marine and Halophilic Anoxygenic Phototrophic Bacteria, Arch. Microbiol., 2002, vol. 176, pp. 243–254.

    Google Scholar 

  52. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Imhoff, J.F., Suling, J., and Mityushina, L.M., Thiorhodospira sibiricagen. nov., sp. nov., a New Alkaliphilic Purple Sulfur Bacterium from a Siberian Soda Lake, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 697–703.

    Google Scholar 

  53. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Achenbach, L.A., and Madigan, M.T., Heliorestis daurensis, gen. nov. sp. nov., an Alkaliphilic Rod-to-Coiled-Shaped Phototrophic Heliobacterium from a Siberian Soda Lake, Arch. Microbiol., 1999, vol. 172, pp. 167–174.

    Google Scholar 

  54. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Tourova, T.P., Kuznetsov, B.B., and Osipov, G.A., Alkaliphilic Heliobacterium Heliorestis baculatasp. nov. and Emended Description of the Genus Heliorestis, Arch. Microbiol., 2000, vol. 174, pp. 283–291.

    Google Scholar 

  55. Gorlenko, V.M., Bryantseva, I.A., Panteleeva, E.E., Turova, T.P., Kolganova, T.V., Makhneva, Z.K., and Moskalenko, A.A., Ectothiorhodosinus mongolicumgen. nov., sp. nov., a New Purple Sulfur Bacterium from a Soda Lake in Mongolia, Mikrobiologiya, 2004, vol. 73, pp. 80–88.

    Google Scholar 

  56. Puchkova, N.N., Imhoff, J.F., and Gorlenko, V.M., Thiocapsa litoralissp. nov., a New Purple Sulfur Bacterium from Microbial Mats from the White Sea, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1441–1447.

    Google Scholar 

  57. Pierson, B.K. and Castenholz, R.W., A Phototrophic Gliding Filamentous Bacterium of Hot Springs, Chloroflexus aurantiacusgen. and sp. nov., Arch. Microbiol., 1974, vol. 100, pp. 5–24.

    Google Scholar 

  58. Krasil'nikova, E.N., Keppen, O.I., Gorlenko, V.M., and Kondrat'eva, E.N., Growth of Chloroflexus aurantiacuson Media with Different Organic Compounds and the Pathways of Their Metabolism), Mikrobiologiya, 1986, vol. 55, pp. 425–429.

    Google Scholar 

  59. Castenholz, R.W. and Pierson, B.K., Ecology of Thermophilic Anoxygenic Phototrophs, Anoxygenic Photosynthetic Bacteria, Blankenship et al., Eds., Netherlands: Kluwer Academic, 1995, pp. 87–103.

    Google Scholar 

  60. Hanada, S., Hiraishi, A., Shimada, K., and Matsuura, K., Chloroflexus aggreganssp. nov., a Filamentous Phototrophic Bacterium Which Forms Dense Cell Aggregates by Active Gliding Movement, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 676–681.

    Google Scholar 

  61. Castenholz, R.W., Bauld, J., and Jorgenson, B.B., Anoxygenic Microbial Mats of Hot Springs: Thermophilic Chlorobiumsp., FEMS Microbiol. Ecol., 1990, vol. 74, pp. 325–336.

    Google Scholar 

  62. Madigan, M.T., Chromatium tepidumsp. nov., a Thermophilic Photosynthetic Bacterium of the Family Chromatiaceae, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 222–227.

    Google Scholar 

  63. Madigan, M.T. and Oren, A., Thermophilic and Halophilic Extremophiles, Curr. Opin. Microbiol., 1999, vol. 2, pp. 265–269.

    Google Scholar 

  64. Gorlenko, V.M., Kompantseva, E.I., and Puchkova, N.N., The Effect of Temperature on the Distribution of Pho totrophic Bacteria in Hot Springs, Mikrobiologiya, 1985, vol. 54, pp. 848–853.

    Google Scholar 

  65. Kuntikov, E.I. and Gorlenko, V.M., Interrelation between Halo-and Thermotolerance in Anoxygenic Phototrophic Bacteria, Mikrobiologiya, 1998, vol. 67, pp. 298–304.

    Google Scholar 

  66. Stackebrandt, E. and Goebel, B.M., Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology, Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 846–849.

    Google Scholar 

  67. Shiba, T. and Harashima, K., Aerobic Photosynthetic Bacteria, Microb. Sci., 1986, vol. 3, pp. 376–378.

    Google Scholar 

  68. Yurkov, V., Stackebrandt, E., Holmes, A., Fuerst, J., Hugenholtz, P., Go-Lecki, God'on, N., Gorlenko, V.M., and Kompantseva, E.I., Phylogenetic Position of Novel Aerobic, Bacteriochlorophyll a-Containing Bacteria and Description of Roseococcus thiosulfatophilusgen. nov., sp. nov., Erythromicrobium ramosumgen. nov., sp. nov., and Erythrobacter litoralesgen. nov., sp. nov., Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 427–443.

    Google Scholar 

  69. Girch, F., Garcia-Gil, L.J., and Owermann, J., Previously Unknown and Phylogenetically Diverse Member of the Green Nonsulfur Bacteria Are Indigenous to Freshwater Lakes, Arch. Microbiol.,2003, vol. 177, pp. 1–10.

    Google Scholar 

  70. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B., Ferrous Iron Oxidation by Anoxygenic Phototrophic Bacteria, Nature, 1993, vol. 362, pp. 834–835.

    Google Scholar 

  71. Heising, S., Richter, L., Ludwig, W., and Shink, B., Chlorobium ferrooxidanssp. nov., a Phototrophic Green Sulfur Bacterium That Oxidizes Ferrous Iron in Coculture with a "Geospirillum"sp. Strain, Arch. Microbiol., 1999, vol. 172, pp. 116–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorlenko, V.M. History of the Study of Biodiversity of Photosynthetic Bacteria. Microbiology 73, 541–550 (2004). https://doi.org/10.1023/B:MICI.0000044245.67298.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000044245.67298.9f

Navigation