Skip to main content
Log in

Geological Microbiology

  • Published:
Microbiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Nadson, G.A., Mikroorganizmy kak geologicheskie deyateli(Microorganisms as Geological Agents), St. Petersburg: Tip. Saikina, 1903.

    Google Scholar 

  2. Isachenko, B.L., Investigations on the Bacteria of the Arctic Ocean (1914). In Isachenko, B.L., Izbrannye Trudy (Selected Works), Moscow: Akad. Nauk SSSR, 1951, vol. II, pp. 26–142.

    Google Scholar 

  3. Isachenko, B.L., Microbiological Investigations on Mud Lakes (1927), in Isachenko, B.L., Izbrannye Trudy (Selected Works), Moscow: Akad. Nauk SSSR, vol. I, pp. 111–285.

    Google Scholar 

  4. Isachenko, B.L., Purple Sulfur Bacteria from the Lower Boundaries of the Biosphere (1939), in Isachenko, B.L., Izbrannye Trudy (Selected Works), Moscow: Akad. Nauk SSSR, 1951, vol. II, pp. 200–208.

    Google Scholar 

  5. Isachenko, B.L., On the Genesis of Sulfur Deposits, Tr. Inst. Mikrobiol., 1958, no. 5, pp. 18–23.

  6. Winogradsky, S.N., Mikrobiologiya pochvy (Microbiology of Soil), Moscow: Akad. Nauk SSSR, 1952.

    Google Scholar 

  7. Kuznetsov, S.I., Romanenko, V.I., and Kuznetsova, N.S., Faktory Formirovaniya Vodnykh Mass i Raionirovanie Vnutrennikh Vodoemov (Factors of Water Mass Forma-tion and Zonation of Inland Reservoirs), Leningrad: Nauka, 1974.

    Google Scholar 

  8. Kuznetsov, S.I., Rol' mikroorganizmov v krugovorote veshchestv v ozerakh (Role of Microorganisms in the Cycles of Elements in Lakes), Moscow: Akad. Nauk SSSR, 1952.

    Google Scholar 

  9. Ivanov, M.V. and Freney, J.R., Eds., Global'nyi geokhi-micheskii tsikl sery i vliyanie na nego deyatel'nosti cheloveka (The Global Sulfur Cycle and the Effect Exerted on It by Human Activities), Moscow: Nauka, 1983.

    Google Scholar 

  10. Kuznetsov, S.I., The Use of Radioactive 14 C-Carbon Dioxide for the Determination of the Relative Values of Photosynthesis and Chemosynthesis in Lakes, Izotopy v mikrobiologii (Isotopes in Microbiology), Moscow: Akad. Nauk SSSR, 1955, pp. 679–683.

    Google Scholar 

  11. Ivanov, M.V., The Use of Isotopes for Studying Sulfate Reduction in Lake Belovod', Mikrobiologiya, 1956, vol. 25, no. 3, pp. 305–309.

    Google Scholar 

  12. Sorokin, Yu.I., Chernoe more (Black Sea), Moscow: Nauka, 1982.

    Google Scholar 

  13. Ivanov, M.V., Rol' mikroorganizmov v genezise mestor-ozhdenii samorodnoi sery (The Role of Microorganisms in the Genesis of Native Sulfur Deposits), Moscow: Nauka, 1964.

    Google Scholar 

  14. Ivanov, M.V. and Gorlenko, V.M., A Study of Microbial Formation of Hydrogen Sulfide in Oil Fields with the Use of Na 35 SO 4, Mikrobiologiya, 1966, vol. 35, no. 1, pp. 146–152.

    Google Scholar 

  15. Ivanov, M.V., Belyaev, S.S., and Laurinawichus, K.K., Methods of Quantitative Investigation of Microbial Production and Utilization of Methane, Microbial Production and Utilization of Gases, Schlegel, H., Ed., Gottingen, 1976, pp. 63–67.

  16. Ivanov, M.V. and Lein, A.Yu., Changes in Stable Isotopic Composition of Gases and Minerals as a Result of Microbial Activity, Instruments, Methods and Missions for the Investigation of Extraterrestrial Microorganisms, Hoover, R., Ed., Proc. SPIE, 1997, vol. 3111, pp. 395–399.

  17. Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobi-ologii (Lectures on Environmental Microbiology), Moscow: Nauka, 2003.

    Google Scholar 

  18. The Global Carbon Cycle. SCOPE, Bolin, B., et al., Eds., Chichester: Wiley, 1979.

    Google Scholar 

  19. Gal'chenko, V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

    Google Scholar 

  20. Van Dover, S.L., The Ecology of Deep-Sea Hydrothermal Vents. Princeton: Princeton University Press, 2000.

    Google Scholar 

  21. Stevens, T.O. and Mc Kinley, J.P., Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers, Science, 1995, vol. 270, pp. 450–454.

    Google Scholar 

  22. Tyler, S., The Global Methane Budget, Microbial Production and Consumption of Greenhouse Gases, Rogers, J.E. and Whitman, W.B., Eds., Washington: Am. Soc. Microbiol., 1991, pp. 7–38.

    Google Scholar 

  23. Ivanov, M.V., Rusanov, I.I., Lein, A.Yu., Pimenov, N.V., Yousupov, S.K., and Galchenko, V.F., Biogeochemistry of Methane Cycle in the Anaerobic Zone of the Black Sea, Past and Present Water Column Anoxia. NATO Advanced Research Workshop, 4-8 October, Crimea, Ukraine 2003, pp. 42–43.

  24. Reeburgh, W.S., Anaerobic Methane Oxidation Rate Depth Distribution in Skany Bay Sediments, Planetary Sci. Lett., 1980, vol. 47, pp. 345–352.

    Google Scholar 

  25. Boetius, A., Ravenschlag, K., Schubert, G.J., Rickert, D., Widdel, F., Gieseke, A., Amman, R., Jorgensen, B.B., and Witte, U., Pfannkucho, A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane, Nature, 2000, vol. 407, pp. 623–626.

    Google Scholar 

  26. Ivanov, M.V. and Belyaev, S.S., Microbial. Activity in Waterflooded Oil Fields and Its Possible Regulation, Proc. 1982 Int. Conf. on Microbial Enhancement of Oil Recovery, Shangri La, Oklahoma,1983, pp. 43–52.

  27. Belyaev, S.S., Borzenkov, I.A., Nazina, T.N., Rozanova, E.P., Glumov, I.F., Ibatullin, R.R., and Ivanov, M.V., Use of Microorganisms in the Biotechnology for the Enhancement of Oil Recovery, Mikrobiologiya, 2004, vol. 73, no. 5, pp. 687–697.

    Google Scholar 

  28. Ivanov, M.V., A Microbiological Method for Controlling Methane in Coal Mines, Vest. Akad. Nauk SSSR, 1988, no. 3, pp. 16–22.

  29. Zavarzin, G.A., Microbial Geochemical Calcium Cycle, Mikrobiologiya, 2002, vol. 71, no. 1, pp. 5–22.

    Google Scholar 

  30. Lein, A.Yu., Authigenic Carbonate Formation in the Ocean, Litol. Polezn. Iskop., 2004, no. 1, pp. 3–35.

  31. Avakyan, Z.A., Microflora of Mountain Rocks and Its Role in Leaching of Silicate Minerals, Biogeotekh-nologiya metallov (Biogeotechnology of Metals), Karavaiko, G.I. and Grudeva, S.N., Eds., Moscow: TsMP, 1985, pp. 181–200.

    Google Scholar 

  32. Geomicrobiology: Interaction Between Microbes and Minerals, Banfield, J.F. and Nealson, K.H., Eds., Washington DC: Mineralogical Soc. Am., 1997.

  33. Karavaiko, G.I., Belkanova, N.P., Eroshchev-Shak, V.A., and Avakyan, Z.A., The Role of Microorganisms and Some Physicochemical Environmental Factors in Quartz Destruction, Mikrobiologiya, 1984, vol. 53, no. 6, pp. 976–981.

    Google Scholar 

  34. Avakyan, Z.A., Belkanova, N.P., Karavaiko, G.I., and Piskunov, V.P., Silicon Compounds in the Solution during Bacterial Degradation of Quartz, Mikrobiologiy a, 1985, vol. 54, no. 2, pp. 301–307.

    Google Scholar 

  35. Belkanova, N.P., Eroshchev-Shak, V.A., Lebedeva, E.V., and Karavaiko, G.I., Dissolution of Kimberlite Minerals by Heterotrophic Microorganisms, Mikrobiologiya,1987, vol. 56, no. 4, pp. 613–620.

    Google Scholar 

  36. Platonova, N.P., Eroshchev-Shak, V.A., Lebedeva, E.V., and Karavaiko, G.I., Formation of Mixed Serpentine-Smectite Phase in Kimberlite under the Action of Thio-bacillus thiooxidans, Mikrobiologiya, 1989, vol. 58, no. 2, pp. 271–275.

    Google Scholar 

  37. Platonova, N.P., Karavaiko, G.I., Lebedeva, E.V., and Zherdev, P.Yu., Transformation of Kimberlite Minerals by Autotrophic Bacteria, Mikrobiologiya, 1994, vol. 63, no. 3, pp. 473–483.

    Google Scholar 

  38. Mel'nikova, E.O., Avakyan, Z.A., Karavaiko, G.I., and Krutsko, V.S., Microbial Destruction of Silicate Beryllium Containing Minerals, Mikrobiologiya, 1990, vol. 59, no. 1, pp. 63–69.

    Google Scholar 

  39. Korenevskii, A.A., Avakyan, Z.A., and Karavaiko, G.I., Microbial Destruction of Synnerites, Mikrobiologiya, 1992, vol. 61, no. 6, pp. 1011–1017.

    Google Scholar 

  40. Karavaiko, G.I., Avakyan, Z.A., Krutsko, V.S., Mel'nikova, E.O., Zhdanov, A.V., and Piskunov, V.P., Microbiological Studies on a Spodumene Deposit in East Siberia, Mikrobiologiya, 1979, vol. 48, no. 3, pp. 502–508.

    Google Scholar 

  41. Turova, E.S., Microbial Transformation of Kaolines and Kaoline-Containing Raw Materials, Cand. Sci. (Biol.) Dissertatio n, Moscow, 1997.

  42. Vodyanitskii, Yu.N., Turova, E.S., Avakyan, Z.A., and Karavaiko, G.I., A Study of Anaerobiosis in a Model Experiment with Kaoline), Pochvovedenie, 1997, no. 7, pp. 845–856.

  43. Bonch-Osmolovskaya, E.A., Sokolova, T.G., Kostrikina, N.A., and Zavarzin, G.A., Desulfurella acetivoransgen. nov., sp. nov.-a New Thermophilic Sulfur-Reducing Eubacterium, Arch. Microbiol., 1990, vol. 153, pp. 151–155.

    Google Scholar 

  44. Miroshnichenko, M.L., Rainey, F.A., Rhode, M., and Bonch-Osmolovskaya, E.A., Hippea maritimagen. nov. and sp. nov. Represents a New Genus of Thermophilic Sulfur-Reducing Bacteria from Submarine Hot Vent, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1033–1038.

    Google Scholar 

  45. L'Haridon, S., Cilia, V., Messner, P., Raguenes, G., Gambacorta, A., Sleutr, U.B., Prieur, D., and Jeanthon, C., Desulfobacterium thermolithotrophumgen. nov., sp. nov., a Novel Autotrophic Sulfur-Reducing Bacterium Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 701–711.

    Google Scholar 

  46. Stetter, K.O., Konig, H., and Stackebrandt, E., Pyrodictiumgen. nov., a New Genus of Submarine Disc-Shaped Sulfur-Reducing Archaebacteria Growing Optimally at 10°C, Syst. Appl. Microbiol., 1983, vol. 4, pp. 535–551.

    Google Scholar 

  47. Segerer, A., Trincone, A., Gahrtz, M., and Stetter, K.O., Stigiolobus azoricusgen. and sp. nov. Represents a Novel Genus of Anaerobic, Extremely Thermoacido-philic Archaea of the Order Sulfolobales, J. Bacteriol., 1991, vol. 41, pp. 495–501.

    Google Scholar 

  48. Golovacheva, R.S. and Karavaiko, G.I., Sulfobacillus thermosulfidooxidansgen. nov., sp. nov.-a Faculta-tively Thermophilic Acidophilic Organism Isolate from Sulfide Ore Deposits, Mikrobiologiya, 1978, vol. 47, no. 5, pp. 815–821.

    Google Scholar 

  49. Golovacheva, R.S., A new Extremely Thermoacidophilic Microorganism Oxidizing Sulfur, Dokl. Akad. Nauk SSSR, 1984, vol. 274, pp. 1488–1490.

    Google Scholar 

  50. Karavaiko, G.I., Golyshina, O.V., Troitskii, A.V., Valejo-Roman, K.M., Golovacheva, R.S., and Pivovarova, T.A., Sulfurococcus yellowstonensissp. nov.-a New Species of Iron-and Sulfur-Oxidizing Thermoacidophilic Bacteria, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 668–682.

    Google Scholar 

  51. Caldwell, D.E., Caldwell, S.J., and Laycock, J.P., Thermothrix thioparusgen. et sp. nov., a Facultatively Anaerobic Facultative Chemolithotroph Living at Neutral pH and High Temperature, Can. J. Microbiol., 1976, vol. 22, pp. 1509–1517.

    Google Scholar 

  52. Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., K König H., Rahcel, R., Rockenger, I., Fricke, H., and Stetter, K.O., Aquifex pyrophilusgen. nov., sp. nov., Represents a Novel Group of Marine Hydrogen Oxidiz-ing Bacteria, Syst. Appl. Microbiol., 1992, vol. 15, pp. 340–351.

    Google Scholar 

  53. Hafenbrandl, D., Keller, M., Dirmeir, R., Rachel, R., R??nagel, P., Burggraf, S., Huber, H., and Stetter, K.O., Ferrolobus placidusgen. nov., sp. nov., a Novel Hyper-thermophilic Archaeum That Oxidizes Fe 2+ at Neutral pH under Anoxic Conditions, Arch. Microbiol., 1996, vol. 166, pp. 308–314.

    Google Scholar 

  54. Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., Pyrolobus fumarii, gen. and sp. nov., Represents a Novel Group of Archaea, Extending the Upper Temperature Limit for Life to 11°C, Extremophiles, 1997, vol. 1, pp. 14–21.

    Google Scholar 

  55. Jeanthon, C., L'Haridon, S., Reysenbach, A.L., Vernet, M., Messner, P., S lytr, U.B., and Prieur, D., Methanococcus infernussp. nov., a Novel Hyperthermophilic Lithotrophic Methanogen Isolated from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 913–919.

    Google Scholar 

  56. Volkl, P., Huber, R., Drobner, E., Rahel, R., Burggraf, S., Tricone, A., and Stetter, K.O., Pyrobaculum aerophilumsp. nov., a Novel Nitrate-Reducing Hyperthermophilic Archaeum, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2918–2926.

    Google Scholar 

  57. Patritskaya, V.Yu., Regulation of the Carbon and Sulfur Metabolism in Filamentous Gliding Sulfur Bacteria of the Genera Beggiatoaand Leucothrix , Cand. Sci. (Biol.) Dissertation, 2001.

  58. Polkin, S.I., Panin, V.V., Adamov, E.V., Karavaiko, G.I., and Chernyak, A.S., Theory and Practice of Utilizing Microorganisms in Processing Difficult-to-Dress Ores and Concentrates, 11th Int. Mineral Proc. Congr., Univ. Di Cagliari, Cagliar i, 1975, paper 33.

  59. Yakhontova, L.K., Sergeev, V.M., Karavaiko, G.I., and Sukhantseva, V.S., Actual Constitution of Sulfides and the Process of Their Bacterial Oxidation, Ekologiya i geokhimicheskaya deyatel'nost' mikroorganizmov (Ecology and Geochemical Activity of Microorgan-isms), Pushchino: NTsBI RAN, 1976, pp. 99–104.

    Google Scholar 

  60. Ivanov, M.V. and Lein, A.Yu., On the Carbon and Sulfur Balances in the Black Sea, Black Sea Oceanography, Isdar, E.A. and Murrey, J.W., Eds., Netherlands: Kluwer Academic, 1991, vol. 351, pp. 307–319.

  61. Sokolova, G.A. and Karavaiko, G.I., Fiziologiya i geokhimicheskaya deyatel'nost' tionovykh bakterii (Physiology and Geochemical Activity of Thionic Bacteria), Moscow: Nauka, 1964.

    Google Scholar 

  62. Kuznetsov, S.I., Ivanov, M.V., and Lyalikova, N.N., Vvedenie v geologicheskuyu mikrobiologiyu (Introduction to Geological Microbiology), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  63. Karavaiko, G.I., Evolution of Microbial Distribution and Activity in the Process of Dump and Underground Leaching of Metals, Biohydrometallurgy, Moscow: CIP GKNT, 1990, pp. 218–234.

    Google Scholar 

  64. Lopez-Archilla, M.I., Marin, I., and Amils, R., Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain, Microb. Ecol., 2001, vol. 41, pp. 20–35.

    Google Scholar 

  65. Gonzalez-Toril, E., Lobet-Brossa, E., Casamayor, E.O., Amann, R., and Amils, R., Microbial Ecology of an Extreme Acidic Environment, The Tinto River, Appl. Environ. Microbiol.,2003, vol. 69, no. 8, pp. 4853–4865.

    Google Scholar 

  66. Slobodkin, A.I., Zavarzina, D.G., Sokolova, T.G., and Bonch-Osmolovskaya, E.A., Dissimilatory Reduction of Inorganic Electron Acceptors by Thermophilic Anaero-bic Prokaryotes, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 600–622.

    Google Scholar 

  67. Lovley, D.R., Fe(III) and Mn(IV) Reduction, Environmental Microbe-Mineral Interactions, Lovley, D.R., Ed., Washington, DC: Am. Soc. Microbiol., 2000, pp. 3-30.

    Google Scholar 

  68. Shelobolina, E.S., Vanpraagh, C.G., and LoVeley, D.R., Use of Ferric and Ferrous Iron Containing Minerals for Respiration by Desulfitobacterium frappieri, Geomicro-biol. J., 2003, vol. 20, pp. 143–156.

    Google Scholar 

  69. Brock, T.D. and Gustafson, J., Ferric Iron Reduction by Sulfur-and Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1976, vol. 32, pp. 567–571.

    Google Scholar 

  70. Slobodkin, A.I., Eroshchev-Shak, V.A., Kostrikina, N.A., Lavrushin, V.Yu., Dainyak, L.G., and Zavarzin, G.A., Formation of Magnetite by Thermophilic Anaerobic Microorganisms, Dokl. Akad. Nau k, 1995, vol. 345, no. 5, pp. 694–697.

    Google Scholar 

  71. Boone, D.R., Lin, Y., Zhao, Z.J., Balkwill, D.L., Drake, G.R., Stevens, T.O., and Aldrich, H.C., Bacillus infernussp. nov., an Fe(III)-and Mn(IV)-Reducing Anaerobe from the Deep Terrestrial Subsurface, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 441–448.

    Google Scholar 

  72. Slobodkin, A.I. and Wiegel, L., Fe(III) as an Electron Acceptor for H 2 Oxidation in Thermophilic Anaerobic Enrichment Cultures from Geothermal Areas, Extermophiles, 1997, vol. 1, pp. 106–109.

    Google Scholar 

  73. Greene, A.C., Patel, B.K.C., and Sheehy, A.J., Deferribacter thermophilusgen. nov., sp. nov., a Novel Thermophilic Manganese-and Iron-Reducing Bacterium Isolated from a Petroleum Reservoir, Int. J. Syst. Bacteriol., 1986, vol. 47, pp. 505–509.

    Google Scholar 

  74. Pronk, J.T., De Bruyn, J.C., Bos, P., and Kuenen, J.G., Anaerobic Growth of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2227–2230.

    Google Scholar 

  75. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat'eva, T.F., Moore, E.R.B., Abraham, W.-R., Lansdorf, H., Timmis, K.N., Yakimov, M.M., and Goly-shin, P.N., Ferroplasma acidiphilumgen. nov., sp. nov., an Acidophilic, Autotrophic, Ferrous-Iron-Oxidizing, Cell-Wall-Lacking, Mesophilic Member of the Ferro-plasmaceaefam. nov., Comprising a Distinct Lineage of the Archaea, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 997–1006.

    Google Scholar 

  76. Lovley, D.R., Stolz, J.F., Nord, G.L., and Philips, E.J.P., Anaerobic Production of Magnetite by Dissimilatory Iron-Reducing Microorganisms, Nature, 1987, vol. 330, pp. 252–254.

    Google Scholar 

  77. Zavarzina, D.G., Biogeochemical Factors of the Trans-formation of Iron Compounds in Reduced Environment, Cand. Sci. (Biol.) Dissertatio n, Moscow, 2001.

  78. Bell, P.E., Mills, A.L., and Herman, J.S., Biogeochemical Conditions Favoring Magnetite Formation during Anaerobic Iron Reduction, Appl. Environ. Microbiol., 1987, vol. 53, pp. 2610–2616.

    Google Scholar 

  79. Filina, N.Yu., Biology and Ecology of Bacteria Forming Magnetically Ordered Iron Compounds, Cand. Sci. (Biol.) Dissertatio n, Moscow, 1998.

  80. Frankel, R.B., Papaefthymion, G.C., Blakemore, R.P., and O'Brien, W., Fe 3 O 4 Precipitation in Magnetotactic Bacteria, Biochim. Biophys. Acta, 1983, vol. 763, pp. 147–159.

    Google Scholar 

  81. Heywood, B.R., Bazylinski, D.A., Garratt-Reed, A.J., Mann, S., and Frankel, R.B., Controlled Biosynthesis of Greigite (Fe 3 S 4 ) in Magnetotactic Bacteria, Naturwis-senschaften (Berlin), 1990, vol. 77, pp. 536–538.

    Google Scholar 

  82. Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A., and Jannasch, H.W., Biomineralization of Ferrimagnetic Greigite (Fe 3 S 4 ) and Iron Pyrite (FeS 2 ) in Magnetotactic Bacterium, Nature, 1990, vol. 343, pp. 258–260.

    Google Scholar 

  83. Lyalikova, N.N. and Khizhnyak, T.V., Reduction of Heptavalent Technetium under the Action of an Acidophilic Bacterium of the Genus Thiobacillus, Mikrobiologiy a, 1996, vol. 65, no. 4, pp. 533–539.

    Google Scholar 

  84. Khijniak, T.V., Medvedeva-Lyalikova, N.N., and Simonoff, M., Reduction of Pertechnetate by Haloalkaliphilic Strains of Halomonas, FEMS Microbiol. Ecol., 2003, vol. 44, pp. 109–115.

    Google Scholar 

  85. Wildung, R.E., Gorby, Y.A., Krupka, K.M., Hess, N.J., Lis, W., Plumale, A.E., McKinley, J.P., and Fredrickson, J.K., Effect of Electron Donor and Solution Chemistry on Products of Dissimilatory Reduction of Technetium by Shewanella putrefaciens, Appl. Environ. Microbiol., 2000, vol. 66, no. 6, pp. 2451–2460.

    Google Scholar 

  86. Lloyd, J.R., Microbial Reduction of Metals and Radionuclides, FEMS Microbiol. Rev., 2003, vol. 27, pp. 411–425.

    Google Scholar 

  87. Huber, R., Kristjansson, and Stetter, K.O., Pyrobaculumgen. nov., a New Genus of Neutrophilic, Rod-Shaped Archaebacteria from Continental Solfataras Growing Optimally at 10°C, Arch. Microbiol., 1987, vol. 149, pp. 95–101.

    Google Scholar 

  88. Kashefi, K. and Lovley, D.R., Reduction of Fe(III), Mn(IV), and Toxic Metals at 10°C by Pyrobaculum islandicu m, Appl. Environ. Microbiol., 2000, vol. 66, no. 3, pp. 1050–1056.

    Google Scholar 

  89. Korobushkina, E.D., Karavaiko, G.I., and Korobushkin, I.M.,The Role of Microorganisms in Hypergene Migration of Gold, Biogeotekhnologiya met-allov (Biogeotechnology of Metals), Karavaiko, G.I. and Grudev, S.N., Eds., Moscow: TsMP GKNT, 1985, pp. 130–144.

    Google Scholar 

  90. Gee, A.R. and Dudeney, A.W.L., Adsorption and Crystallisation of Gold at Biological Surfaces, Biohydrometallurgy, Norris, P.N. and Kelly, D.P., Eds, STL, 1988, pp. 437–451.

  91. Marakushev, S.A., Geomicrobiology and Biochemistry of Gold Transformation, Doctoral (Biol.) Dissertatio n, Moscow, 1997.

  92. Beveridge, T.J. and Murray, R.G.E., Uptake and Retention of Metals by Cell Walls of Bacillus subtilis, J. Bac-teriol., 1976, vol. 127, pp. 1502–1518.

    Google Scholar 

  93. Karavaiko, G.I., Kuznetsov, S.I., and Golomzik, A.I., Rol' mikroorganizmov v vyshchelachivanii metallov iz rud (The Role of Microorganism in Metal Leaching from Ores), Moscow: Nauka, 1972.

    Google Scholar 

  94. Pol'kin, S.I., Adamov, E.V., and Panin, V.V., Tekhnologiya bakterial'nogo vyshchelachivaniya tsvetnykh i redkikh metallov (The Technology of Bacterial Leaching of Nonferrous and Rare Metals), Moscow: Nedra, 1982.

    Google Scholar 

  95. Biogeotekhnologiya metallov. Prakticheskoe rukovodstvo (A Practical Guide to Biogeotechnology of Metals), Karavaiko, G.I. et al., Eds., TsMP GKNT, 1989.

  96. Rossi, G., Biohydrometallurgy, Hamburg: McGraw-Hill, 1990.

    Google Scholar 

  97. Barrett, J., Hughes, M.N., Karavaiko, G.I., and Spencer, P.A., Metal Extraction by Bacterial Oxidation of Minerals, New York: Ellis Horwood, 1993.

    Google Scholar 

  98. Bakterial'naya paleontologiya (Bacterial Paleontology), Rozanov, A.Yu., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.V., Karavaiko, G.I. Geological Microbiology. Microbiology 73, 493–508 (2004). https://doi.org/10.1023/B:MICI.0000044241.17848.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000044241.17848.38

Navigation